8 resultados para Metabolic phenotype

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

T cells are required for an effective adaptive immune response. The principal function of T cells is to promote efficient removal of foreign material by identifying and mounting a specific response to nonself. A decline in T cell function in aging is thought to contribute to reduced response to infection and vaccination and an increase in autoimmunity. This may in part be due to the age-related decrease in naïve CD4+ T cells and increase in antigen-experienced CD4+ T cells, loss of redox homeostasis, and impaired metabolic switching. Switching between subsets is triggered by the integration of extracellular signals sensed through surface receptors and the activation of discrete intracellular metabolic pathways. This article explores how metabolic programming and loss of redox homeostasis during aging may contribute to age-associated changes in T cell phenotype and function. © 2014 Elsevier Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim: Dysregulated glucose homeostasis is a hallmark of Type 2diabetes. A distinctive feature of ageing is the accumulation ofsenescent cells, defined as cells that have undergone irreversible lossof proliferative capacity. Characteristic of senescent cells is thesenescence-associated secretory phenotype (SASP) involving theproduction of factors which reinforce senescence arrest in neigh-bouring tissue environments. We hypothesise that SASP inducesmetabolic dysfunction in non-senescent cells, impairing glucosemetabolism and propagating insulin resistance. We sought todetermine the effect of SASP on glucose homeostasis in hepatic,adipose and skeletal muscle cell lines. Methods: Human dermal fibroblasts were subjected to a geno-toxic dose of doxorubicin to induce senescence, confirmed using ab-galactosidase assay. Conditioned media containing SASP werecollected post 24h and 48h of inducing senescence and used at20% and 40% concentrations to treat AML-12 hepatocytes, 3T3-L1 adipocytes and C2C12 myocytes for 24h and 48h. Cells andmedia were collected and glucose and lipid concentrations weremeasured before and after the respective incubation periods. Results: Cell media obtained from C2C12 myocytes exposed to40% SASP for 24h and 48h and AML-12 hepatocytes after 48hexhibited significantly higher concentrations of glucose in com-parison to control media (p < 0.0001, p < 0.05) suggesting areduced glucose uptake. Glucose utilisation remained unchanged in3T3-L1 cells. Conclusion: Our data suggest an important role for SASP inaltering glucose homeostasis and identify SASP as a potentialmediator between ageing and the increase in age-related insulinresistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One classical feature of cancer cells is their metabolic acquisition of a highly glycolytic phenotype. Carbon monoxide (CO), one of the products of the cytoprotective molecule heme oxygenase-1 (HO-1) in cancer cells, has been implicated in carcinogenesis and therapeutic resistance. However, the functional contributions of CO and HO-1 to these processes are poorly defined. In human prostate cancers, we found that HO-1 was nuclear localized in malignant cells, with low enzymatic activity in moderately differentiated tumors correlating with relatively worse clinical outcomes. Exposure to CO sensitized prostate cancer cells but not normal cells to chemotherapy, with growth arrest and apoptosis induced in vivo in part throughmitotic catastrophe. CO targeted mitochondria activity in cancer cells as evidenced by higher oxygen consumption, free radical generation, and mitochondrial collapse. Collectively, our findings indicated that CO transiently induces an anti-Warburg effect by rapidly fueling cancer cell bioenergetics, ultimately resulting in metabolic exhaustion. ©2013 AACR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the association between maternal periconceptional diet and adult offspring health is well characterised, our understanding of the impact of paternal nutrition at the time of conception on offspring phenotype remains poorly defined. Therefore, we determined the effect of a paternal preconception low protein diet (LPD on adult offspring cardiovascular and metabolic health in mice. Male C57BL/6 mice were fed either normal protein diet (NPD; 18% casein or LPD (9% casein for 7 wk before mating. At birth, a reduced male-to-female ratio (P = 0.03 and increased male offspring weight (P = 0.009 were observed in litters from LPD compared with NPD stud males with no differences in mean litter size. LPD offspring were heavier than NPD offspring at 2 and 3 wk of age (P <0.02. However, no subsequent differences in body weight were observed. Adult male offspring derived from LPD studs developed relative hypotension (decreased by 9.2 mmHg and elevated heart rate (P <0.05, whereas both male and female offspring displayed vascular dysfunction and impaired glucose tolerance relative to NPD offspring. At cull (24 wk, LPD males had elevated adiposity (P = 0.04, reduced heart-to-body weight ratio (P = 0.04, and elevated circulating TNF-α levels (P = 0.015 compared with NPD males. Transcript expression in offspring heart and liver tissue was reduced for genes involved in calcium signaling (Adcy, Plcb, Prkcb and metabolism (Fto in LPD offspring (P <0.03. These novel data reveal the impact of suboptimal paternal nutrition on adult offspring cardiovascular and metabolic homeostasis, and provide some insight into the underlying regulatory mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, we have shown that a maternal low protein diet, fed exclusively during the preimplantation period of mouse development (Emb-LPD), is sufficient to induce by the blastocyst stage a compensatory growth phenotype in late gestation and postnatally, correlating with increased risk of adult onset cardiovascular disease and behavioural dysfunction. Here, we examine mechanisms of induction of maternal Emb-LPD programming and early compensatory responses by the embryo. Emb-LPD induced changes in maternal serum metabolites at the time of blastocyst formation (E3.5), notably reduced insulin and increased glucose, together with reduced levels of free amino acids (AAs) including branched chain AAs leucine, isoleucine and valine. Emb-LPD also caused reduction in the branched chain AAs within uterine fluid at the blastocyst stage. These maternal changes coincided with an altered content of blastocyst AAs and reduced mTORC1 signalling within blastocysts evident in reduced phosphorylation of effector S6 ribosomal protein and its ratio to total S6 protein but no change in effector 4E-BP1 phosphorylated and total pools. These changes were accompanied by increased proliferation of blastocyst trophectoderm and total cells and subsequent increased spreading of trophoblast cells in blastocyst outgrowths. We propose that induction of metabolic programming following Emb-LPD is achieved through mTORC1signalling which acts as a sensor for preimplantation embryos to detect maternal nutrient levels via branched chain AAs and/or insulin availability. Moreover, this induction step associates with changes in extra-embryonic trophectoderm behaviour occurring as early compensatory responses leading to later nutrient recovery. © 2012 Fleming et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human and animal studies have revealed a strong association between periconceptional environmental factors, such as poor maternal diet, and an increased propensity for cardiovascular and metabolic disease in adult offspring. Previously, we reported cardiovascular and physiological effects of maternal low protein diet (LPD) fed during discrete periods of periconceptional development on 6-month-old mouse offspring. Here, we extend the analysis in 1 year aging offspring, evaluating mechanisms regulating growth and adiposity. Isocaloric LPD (9% casein) or normal protein diet (18% casein; NPD) was fed to female MF-1 mice either exclusively during oocyte maturation (for 3.5 days prior to mating; Egg-LPD, Egg-NPD, respectively), throughout gestation (LPD, NPD) or exclusively during preimplantation development (for 3.5 days post mating; Emb-LPD). LPD and Emb-LPD female offspring were significantly lighter and heavier than NPD females respectively for up to 52 weeks. Egg-LPD, LPD and Emb-LPD offspring displayed significantly elevated systolic blood pressure at 52 weeks compared to respective controls (Egg-NPD, NPD). LPD females had significantly reduced inguinal and retroperitoneal fat pad: body weight ratios compared to NPD females. Expression of the insulin receptor (Insr) and insulin-like growth factor I receptor (Igf1r) in retroperitoneal fat was significantly elevated in Emb-LPD females (P&0.05), whilst Emb-LPD males displayed significantly decreased expression of the mitochondrial uncoupling protein 1 (Ucp1) gene compared to NPD offspring. LPD females displayed significantly increased expression of Ucp1 in interscapular brown adipose tissue when compared to NPD offspring. Our results demonstrate that aging offspring body weight, cardiovascular and adiposity homeostasis can be programmed by maternal periconceptional nutrition. These adverse outcomes further exemplify the criticality of dietary behaviour around the time of conception on long-term offspring health. © 2011 Watkins et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key factor in the use of assisted reproductive technologies (ART) for diverse species is the safety of procedures for long-term health. By using a mouse model, we have investigated the effect of in vitro culture and embryo transfer (ET) of superovulated embryos on postnatal growth and physiological activity compared with that of embryos developing in vivo. Embryo culture from two-cell to blastocyst stages in T6 medium either with or without a protein source reduced blastocyst trophectoderm and inner cell mass cell number compared with that of embryos developing in vivo. Embryo culture and ET had minimal effects on postnatal growth when compared with in vivo development with an equivalent litter size. However, embryo culture, and to a lesser extent ET, led to an enhanced systolic blood pressure at 21 weeks compared with in vivo development independent of litter size, maternal origin, or body weight. Moreover, activity of enzymatic regulators of cardiovascular and metabolic physiology, namely, serum angiotensin-converting enzyme and the gluconeogenesis controller, hepatic phosphoeno/pyruvate carboxykinase, were significantly elevated in response to embryo culture and/or ET in female offspring at 27 weeks, independent of maternal factors and postnatal growth. These animal data indicate that postnatal physiological criteria important in cardiovascular and metabolic health may be more sensitive to routine ART procedures than growth. © 2007 by The National Academy of Sciences of the USA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian placentation is dependent upon the action of trophoblast cells at the time of implantation. Appropriate fetal growth, regulated by maternal nutrition and nutrient transport across the placenta, is a critical factor for adult offspring long-term health. We have demonstrated that a mouse maternal low-protein diet (LPD) fed exclusively during preimplantation development (Emb-LPD) increases offspring growth but programmes adult cardiovascular and metabolic disease. In this study, we investigate the impact of maternal nutrition on post-implantation trophoblast phenotype and fetal growth. Ectoplacental cone explants were isolated at day 8 of gestation from female mice fed either normal protein diet (NPD: 18% casein), LPD (9% casein) or Emb-LPD and cultured in vitro. We observed enhanced spreading and cell division within proliferative and secondary trophoblast giant cells (TGCs) emerging from explants isolated from LPD-fed females when compared with NPD and Emb-LPD explants after 24 and 48 h. Moreover, both LPD and Emb-LPD explants showed substantial expansion of TGC area during 24-48 h, not observed in NPD. No difference in invasive capacity was observed between treatments using Matrigel transwell migration assays. At day 17 of gestation, LPD- and Emb-LPD-fed conceptuses displayed smaller placentas and larger fetuses respectively, resulting in increased fetal:placental ratios in both groups compared with NPD conceptuses. Analysis of placental and yolk sac nutrient signalling within the mammalian target of rapamycin complex 1 pathway revealed similar levels of total and phosphorylated downstream targets across groups. These data demonstrate that early post-implantation embryos modify trophoblast phenotype to regulate fetal growth under conditions of poor maternal nutrition.