2 resultados para Meshfree particle methods
em Aston University Research Archive
Resumo:
Particle impacts are of fundamental importance in many areas and there has been a renewed interest in research on particle impact problems. A comprehensive investigation of the particle impact problems, using finite element (FE) methods, is presented in this thesis. The capability of FE procedures for modelling particle impacts is demonstrated by excellent agreements between FE analysis results and previous theoretical, experimental and numerical results. For normal impacts of elastic particles, it is found that the energy loss due to stress wave propagation is negligible if it can reflect more than three times during the impact, for which Hertz theory provides a good prediction of impact behaviour provided that the contact deformation is sufficiently small. For normal impact of plastic particles, the energy loss due to stress wave propagation is also generally negligible so that the energy loss is mainly due to plastic deformation. Finite-deformation plastic impact is addressed in this thesis so that plastic impacts can be categorised into elastic-plastic impact and finite-deformation plastic impact. Criteria for the onset of finite-deformation plastic impacts are proposed in terms of impact velocity and material properties. It is found that the coefficient of restitution depends mainly upon the ratio of impact velocity to yield Vni/Vy0 for elastic-plastic impacts, but it is proportional to [(Vni/Vy0)*(Y/E*)]-1/2, where Y /E* is the representative yield strain for finite-deformation plastic impacts. A theoretical model for elastic-plastic impacts is also developed and compares favourably with FEA and previous experimental results. The effect of work hardening is also investigated.
Resumo:
The importance of mannitol has increased recently as an emerging diluent for orodispersible dosage forms. The study aims to prepare spray dried mannitol retaining high porosity and mechanical strength for the development of orally disintegrating tablets (ODTs). Aqueous feed of d-mannitol (10% w/v) comprising ammonium bicarbonate, NH4HCO3 (5% w/v) as pore former was spray dried at inlet temperature of 110-170°C. Compacts were prepared at 151MPa and characterized for porosity, hardness and disintegration time. Particle morphology and drying mechanisms were studied using thermal (HSM, DSC and TGA) and polymorphic (XRD) methods. Tablet porosity increased from 0.20±0.002 for pure mannitol to 0.53±0.03 using fabricated porous mannitol. Disintegration time dropped by 50-77% from 135±5.29s for pure mannitol to 75.33±2.52-31.67±1.53s for mannitol 110-170°C. Hardness increased by 150% at 110°C (258.67±28.89N) and 30% at 150°C (152.70±10.58N) compared to pure mannitol tablets (104.17±1.70N). Increasing inlet temperature resulted in reducing tablet hardness due to generation of 'micro-sponge'-like particles exhibiting significant elastic recovery. Impact of mannitol polymorphism on plasticity/elasticity cannot be ruled out as a mixture of α and β polymorphs formed upon spray drying.