22 resultados para Membrane Transport

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Alix/Bro1p family proteins have recently been identified as important components of multivesicular endosomes (MVEs) and are involved in the sorting of endocytosed integral membrane proteins, interacting with components of the ESCRT complex, the unconventional phospholipid LBPA, and other known endocytosis regulators. During infection, Alix can be co-opted by enveloped retroviruses, including HIV, providing an important function during virus budding from the plasma membrane. In addition, Alix is associated with the actin cytoskeleton and might regulate cytoskeletal dynamics. RESULTS: Here we demonstrate a novel physical interaction between the only apparent Alix/Bro1p family protein in C. elegans, ALX-1, and a key regulator of receptor recycling from endosomes to the plasma membrane, called RME-1. The analysis of alx-1 mutants indicates that ALX-1 is required for the endocytic recycling of specific basolateral cargo in the C. elegans intestine, a pathway previously defined by the analysis of rme-1 mutants. The expression of truncated human Alix in HeLa cells disrupts the recycling of major histocompatibility complex class I, a known Ehd1/RME-1-dependent transport step, suggesting the phylogenetic conservation of this function. We show that the interaction of ALX-1 with RME-1 in C. elegans, mediated by RME-1/YPSL and ALX-1/NPF motifs, is required for this recycling process. In the C. elegans intestine, ALX-1 localizes to both recycling endosomes and MVEs, but the ALX-1/RME-1 interaction appears to be dispensable for ALX-1 function in MVEs and/or late endosomes. CONCLUSIONS: This work provides the first demonstration of a requirement for an Alix/Bro1p family member in the endocytic recycling pathway in association with the recycling regulator RME-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general strategy for the expression of bacterial membrane transport and receptor genes in Escherichia coli is described. Expression is amplified so that the encoded proteins comprise 5-35% of E. coli inner membrane protein. Depending upon their topology, proteins are produced with RGSH6 or a Strep tag at the C-terminus. These enable purification in mg quantities for crystallization and NMR studies. Examples of one nutrient uptake and one multidrug extrusion protein from Helicobacter pylori are described. This strategy is successful for membrane proteins from H. pylori, E. coli, Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, Microbacterium liquefaciens, Brucella abortus, Brucella melitensis, Campylobacter jejuni, Neisseria meningitides, Streptomyces coelicolor and Rhodobacter sphaeroides. ©2005 Biochemical Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several studies show that membrane transport mechanisms are regulated by signalling molecules. Recently, genome-wide screen analyses in C.elegans have enabled scientists to identify novel regulators in membrane trafficking and also signalling molecules which are found to couple with this machinery. Fibroblast growth factor (FGF) via binding to fibroblast growth factor receptor (FGFR) mediate signals which are essential in the development of an organism, patterning, cell migration and tissue homeostasis. Impaired FGFR-mediated signalling has been associated with various developmental, neoplastic, metabolic and neurological diseases and cancer. In this study, the potential role of FGFR-mediated signalling pathway as a regulator of membrane trafficking was investigated. The GFP-tagged yolk protein YP170-GFP trafficking was analysed in worms where 1) FGFR signalling cascade components were depleted by RNAi and 2) in mutant animals. From these results, it was found that the disruption of the genes egl-15 (FGFR), egl-17(FGF), let-756(FGF), sem-5, let-60, lin-45, mek-2, mpk-1 and plc-3 lead to abnormal localization of YP170-GFP, suggesting that signalling downstream of FGFR via activation of MAPK and PLC-γ pathway is regulating membrane transport. The route of trafficking was further investigated, to pinpoint which membrane step is regulated by worm FGFR, by analysing a number of GFP-tagged intracellular membrane markers in the intestine of Wild Type (WT) and FGFR mutant worms. FGFR mutant worms showed a significant difference in the localisation of several endosomal membrane markers, suggesting its regulatory role in early and recycling steps of endocytosis. Finally, the trafficking of transferrin in a mammalian NIH/3T3 cell line was investigated to identify the conservation of these membrane trafficking regulatory mechanisms between organisms. Results showed no significant changes in transferrin trafficking upon FGFR stimulation or inhibition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypercoiling polymers can be suited for application to living systems because they are similar in structure to the protein-based lipid assemblies found at fluid interfaces within the body. This leads to a range of exciting possibilities, not only in membrane transport applications but also in biosensors, drug delivery and mechanistic studies of biological membrane function. This study is focused in the study of the stability and suitability of nanostructures made of a hypercoiling polymer for drug delivery applications. The polymer poly (styrene-maleic acid) (PSMA) was combined with the phospholipid dimyristoylphosphatidylcholine (DMPC) to form amphiphilic nanostructures. The stability and suitability of these polymer-phospholipid nanocarriers for hydrophobic and hydrophilic molecules load and release was analyzed by several techniques. It was found that several of the studied molecules had a substantial effect on the surface charge and stability of the nanocarrier. It was also demonstrated that two types of nanocarriers, chemically modified and unmodified, were able to control the release of the molecules, especially in the case of hydrophobic compounds. In addition, as the hydrophobicity increased the release slowed down. These clear nanocarriers have the potential to behave very favorably at interfaces such as the tear lipid film were transparency is a requirement, giving a new way of controlled drug release in the eye.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An electrostatic model for osmotic flow through circular cylindrical pores is developed to describe the reflection coefficient for the membrane transport in the presence of surface charges on the pore wall and the solute. For a spherical solute placed at an arbitrary radial position in the pore, the electrical potential was computed by a spectral element method applied to the Poisson-Boltzmann equation together with the condition of electrical neutrality. The interaction energy between the surface charges was used to estimate the osmotic reflection coefficient. The proposed model predicts that even for a small Debye length compared to the pore radius, the repulsive electrostatic interaction between the surface charges could significantly increase the osmotic flow through the pore.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make lifestyle choices that may reduce the risk of disease. Collaboration between geneticists, ophthalmologists, and optometrists suggests that genetic risk factors play a more significant role in AMD than previously thought. The most important genes are associated with immune system modulation and the complement system, e.g., complement factor H (CFH), factor B (CFB), factor C3, and serpin peptidase inhibitor (SERPING1). Genes associated with membrane transport, e.g., ATP-binding cassette protein (ABCR) and voltage-dependent calcium channel gamma 3 (CACNG3), the vascular system, e.g., fibroblast growth factor 2 (FGF2), fibulin-5, lysyl oxidase-like gene (LOXL1) and selectin-P (SELP), and with lipid metabolism, e.g., apolipoprotein E (APOE) and hepatic lipase (LIPC) have also been implicated. In addition, several other genes exhibit some statistical association with AMD, e.g., age-related maculopathy susceptibility protein 2 (ARMS2) and DNA excision repair protein gene (ERCC6) but more research is needed to establish their significance. Modifiable risk factors for AMD should be discussed with patients whose lifestyle and/or family history place them in an increased risk category. Furthermore, calculation of AMD risk using current models should be recommended as a tool for patient education. It is likely that AMD management in future will be increasingly influenced by assessment of genetic risk as such screening methods become more widely available. © 2013 Spanish General Council of Optometry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has previously been shown that myo-inositol hexakisphosphate (myo- InsP6) mediates iron transport into Pseudomonas aeruginosa and overcomes iron-dependent growth inhibition. In this study, the iron transport properties of myo-inositol trisphosphate and tetrakisphosphate regio-isomers were studied. Pseudomonas aeruginosa accumulated iron (III) at similar rates whether complexed with myo-Ins(1,2,3)P3 or myo-InsP6. Iron accumulation from other compounds, notably D/L myo-Ins(1,2,4,5)P4 and another inositol trisphosphate regio-isomer, D-myo-Ins(1,4,5)P3, was dramatically increased. Iron transport profiles from myo-InsP6 into mutants lacking the outer membrane porins oprF, oprD and oprP were similar to the wild-type, indicating that these porins are not involved in the transport process. The rates of reduction of iron (III) to iron (II) complexed to any of the compounds by a Ps. aeruginosa cell lysate were similar, suggesting that a reductive mechanism is not the rate-determining step.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exchange of proteins and lipids between the trans-Golgi network (TGN) and the endosomal system requires multiple cellular machines, whose activities are coordinated in space and time to generate pleomorphic, tubulo-vesicular carriers that deliver their content to their target compartments. These machines and their associated protein networks are recruited and/or activated on specific membrane domains where they select proteins and lipids into carriers, contribute to deform/elongate and partition membrane domains using the mechanical forces generated by actin polymerization or movement along microtubules. The coordinated action of these protein networks contributes to regulate the dynamic state of multiple receptors recycling between the cell surface, endosomes and the TGN, to maintain cell homeostasis as exemplified by the biogenesis of lysosomes and related organelles, and to establish/maintain cell polarity. The dynamic assembly and disassembly of these protein networks mediating the exchange of membrane domains between the TGN and endosomes regulates cell-cell signalling and thus the development of multi-cellular organisms. Somatic mutations in single network components lead to changes in transport dynamics that may contribute to pathological modifications underlying several human diseases such as mental retardation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae MIP channel Fps1p plays an important role in yeast osmoregulation by exporting glycerol. Glycerol accumulates in the cell as a compatible osmolyte during hyperosmotic conditions and is exported once conditions become hypotonic. A gpd1 gpd2 mutant is unable to produce glycerol and is therefore very sensitive to high concentrations of polyols in the growth medium. The sensitivity to C3, C4 and C5, but not C6 polyols, is suppressed by expression of truncated, hyperactive Fps1p. This is because the polyols can then equilibrate over the membrane and hence the concentration gradient collapses. This experiments reveals the substrate spectrum of Fps1p. The system can be used in different ways. For instance, growth assays on different polyols elucidate the substrate range of heterologous channels such as that of the rat aquaglyceroporin AQP9. In addition, the same system is used to search for novel hyperactive mutants of Fps1p, which provide additional information on the mechanism underlying channel regulation. Finally we illustrate that the gpd1 gpd2 double mutant expressing hyperactive Fps1p can be used to manipulate activation and deactivation of the HOG pathway, contributing to our understanding of the control of this osmoregulatory system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early endosome-to-trans-Golgi network (TGN) transport is organized by the retromer complex. Consisting of cargo-selective and membrane-bound subcomplexes, retromer coordinates sorting with membrane deformation and carrier formation. Here, we describe four mammalian retromers whose membrane-bound subcomplexes contain specific combinations of the sorting nexins (SNX), SNX1, SNX2, SNX5, and SNX6. We establish that retromer requires a dynamic spatial organization of the endosomal network, which is regulated through association of SNX5/SNX6 with the p150(glued) component of dynactin, an activator of the minus-end directed microtubule motor dynein; an association further defined through genetic studies in C. elegans. Finally, we also establish that the spatial organization of the retromer pathway is mediated through the association of SNX1 with the proposed TGN-localized tether Rab6-interacting protein-1. These interactions describe fundamental steps in retromer-mediated transport and establish that the spatial organization of the retromer network is a critical element required for efficient retromer-mediated sorting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis the factors surrounding the permeation of alkali and alkaline earth metal salts through hydrogel membranes are investigated. Although of relevance to aqueous separations in general, it was with their potential application in sensors that this work was particularly concerned. In order to study the effect that the nature of the solute has on the transport process, a single polymer matrix, poly (2-hydroxyethyl methacrylate), was initially studied. The influence of cation variation in the presence of a fixed anion was looked at, followed by the effect of the anion in the presence of a fixed cation. The anion was found to possess the dominant influence and tended to subsume any influence by the cation. This is explained in terms of the structure-making and structure-breaking characteristics of the ions in their solute-water interactions. Analogies in the transport behaviour of the salts are made with the Hofmeister series. The effect of the chemical composition of the polymer backbone on the water structuring in the hydrogel and, consequently, transport through the membrane, was investigated by preparing a series of poly (2-hydroxyethyl methacrylate) copolymer membranes and determining the permeability coefficient of salts with a fixed anion. The results were discussed in terms of the `free-volume' model of permeation and the water structuring of the polymer backbone. The ability of ionophores to selectively modulate the permeation of salts through hydrogel membranes was also examined. The results indicated that a dualsorption model was in operation. Finally, hydrogels were used as membrane overlays on coated wire ion-selective electrodes that employed conventional plasticised-PVC-valinomycin based sensing membranes. The hydrogel overlays were found to affect the access of the analyte but not the underlying electrochemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well-known that the rapid flow of water into and out of cells is controlled by membrane proteins called aquaporins (AQPs). However, the mechanisms that allow cells to quickly respond to a changing osmotic environment are less well established. Using GFP-AQP fusion proteins expressed in HEK293 cells, we demonstrate the reversible manipulation of cellular trafficking of AQP1. AQP1 trafficking was mediated by the tonicity of the cell environment in a specific PKC- and microtubule-dependent manner. This suggests that the increased level of water transport following osmotic change may be due a phosphorylation-dependent increase in the level of AQP1 trafficking resulting in membrane localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antitumour bifunctional alkylating agent nitrogen mustard (HN2) inhibited the unidirectional influx of the potassium congener, 86 rubidium, into murine PC6A plasmacytoma cells and L1210 leukaemia cells. The proliferation of L1210 cells in vitro was characterised and shown to be sentitive to HN2. 86Rubidium influx into cells from rapidly-dividing cultures was more sensitive to inhibition by HN2 than that of cells from stationary cultures. Three components of unidirectional 86Rb+ & K+ influx into proliferating L1210 cells were identified pharmacologically: approximately 40% was active to the Na+ K+ ATPase inhibitor ouabain (10-3M), 40% was sensitive to the `loop' diuretics bumetanide (10-4M) and furosemide (10-3M) and the remainder was insensitive to both ouabain and furosemide. HN2 (10-5M) selectively inhibited the diuretic-sensitive component, which was entirely dependent upon extracellular Na+ and Cl- ions, and was presumed to represent Na+ K+ Cl- cotransport activity. The system did not mediate K+ /K+ exchange or unidirectional 86Rb+ efflux; accordingly, 86Rb+ efflux was insensitive to HN2. Inhibition of 86Rb & K+ influx by 10-5M HN2 was accompanied by approximately 35% of cell volume under isosmotic conditions; thus intracellular Na+ and K+ concentrations remained unchanged. These effects followed lethal damage to the cells but preceded actual cell death; other cellular functions were maintained including accumulation of cycloleucine, transmembrane potential, permeability to trypan blue, intracellular pH, total intracellular glutathione and calcium concentrations. No evidence was found that elevated cAMP levels or reduced ATP levels were involved in modulation of 86Rb+ & K+ influx. However, the Na+ - depedent transport of an amino acid was inhibited in a manner which appeared to be independent of 86Rb & K+ influx. An HN2-resistant L1210R cell line was also resistant to furosemide, and lacked a component of 86Rb+ & K+ influx which was sensitive to furosemide (10-3M). The results strongly suggest that the Na+ K+ Cl- costransporter of L1210 cells is a cellular target for HN2. This lesion is discussed with reference to the cytotoxic effects of the agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent polytopic membrane protein that transports many anticancer drugs and organic anions. Its transport mechanism is multifaceted, especially with respect to the participation of GSH. For example, vincristine is cotransported with GSH, estrone sulfate transport is stimulated by GSH, or MRP1 can transport GSH alone, and this can be stimulated by compounds such as verapamil or apigenin. Thus, the interactions between GSH and MRP1 are mechanistically complex. To examine the similarities and differences among the various GSH-associated mechanisms of MRP1 transport, we have measured first the effect of GSH and several GSH-associated substrates/modulators on the binding and hydrolysis of ATP by MRP1 using 8-azidoadenosine-5'-[(32)P]-triphosphate ([(32)P]azidoATP) analogs, and second the initial binding of GSH and GSH-associated substrates/modulators to MRP1. We observed that GSH or its nonreducing derivative S-methylGSH (S-mGSH), but none of the GSH-associated substrate/modulators, caused a significant increase in [gamma-(32)P]azidoATP labeling of MRP1. Moreover, GSH and S-mGSH decreased levels of orthovanadate-induced trapping of [alpha-(32)P]azidoADP. [alpha-(32)P]azidoADP.Vi trapping was also decreased by estone sulfate, whereas vincristine, verapamil, and apigenin had no apparent effects on nucleotide interactions with MRP1. Furthermore, estrone sulfate and S-mGSH enhanced the effect of each other 15- and 10-fold, respectively. Second, although GSH binding increased the apparent affinity of MRP1 for all GSH-associated substrates/modulators tested, only estrone sulfate had a reciprocal effect on the apparent affinity of MRP1 for GSH. Overall, these results indicate significant mechanistic differences between MRP1-mediated transport of GSH and the ability of GSH to modulate MRP1 transport.