2 resultados para Medical writing
em Aston University Research Archive
Resumo:
The underlying work to this thesis focused on the exploitation and investigation of photosensitivity mechanisms in optical fibres and planar waveguides for the fabrication of advanced integrated optical devices for telecoms and sensing applications. One major scope is the improvement of grating fabrication specifications by introducing new writing techniques and the use of advanced characterisation methods for grating testing. For the first time the polarisation control method for advanced grating fabrication has successfully been converted to apodised planar waveguide fabrication and the development of a holographic method for the inscription of chirped gratings at arbitrary wavelength is presented. The latter resulted in the fabrication of gratings for pulse-width suppression and wavelength selection in diode lasers. In co-operation with research partners a number of samples were tested using optical frequency domain and optical low coherence reflectometry for a better insight into the limitations of grating writing techniques. Using a variety of different fabrication methods, custom apodised and chirped fibre Bragg gratings were written for the use as filter elements for multiplexer-demultiplexer devices, as well as for short pulse generation and wavelength selection in telecommunication transmission systems. Long period grating based devices in standard, speciality and tapered fibres are presented, showing great potential for multi-parameter sensing. One particular scope is the development of vectorial curvature and refractive index sensors with potential for medical, chemical and biological sensing. In addition the design of an optically tunable Mach-Zehnder based multiwavelength filter is introduced. The discovery of a Type IA grating type through overexposure of hydrogen loaded standard and Boron-Germanium co-doped fibres strengthened the assumption of UV-photosensitivity being a highly non-linear process. Gratings of this type show a significantly lower thermal sensitivity compared to standard gratings, which makes them useful for sensing applications. An Oxford Lasers copper-vapour laser operating at 255 nm in pulsed mode was used for their inscription, in contrast to previous work using CW-Argon-Ion lasers and contributing to differences in the processes of the photorefractive index change
Resumo:
Every year throughout the world, individuals' health is damaged by their exposure to toxic chemicals at work. In most cases these problems will resolve, but many will sustain permanent damage. Whilst any justified claim for compensation requires medical and legal evidence a crucial and often controversial component of this process is the establishment of a causal link between the individual's condition and exposure to a specific chemical or substance. Causation, in terms of how a substance or substances led the claimant to his or her current plight, can be difficult to establish and the main purpose of this book, is to provide the aspiring expert report writer with a concise, practical guide that uses case histories to illuminate the process of establishing causation in occupational toxicity proceedings. In summary: A practical, accessible guide to the preparation of balanced, scientifically sound expert reports in the context of occupational toxicology. Focuses on the scientist's role in establishing a causal link between exposure to toxins and an individual's ill health. Includes real-life case histories drawn from the Author's 15 years experience in this area to illustrate the principles involved. Expert Report Writing in Toxicology: Forensic, Scientific and Legal Aspects proves invaluable to scientists across a range of disciplines needing guidance as to what is expected of them in terms of the best use of their expertise and how to present their findings in a manner that is authoritative, balanced and informative.