27 resultados para Medical studies and experimental treatments
em Aston University Research Archive
Resumo:
Future optical networks will require the implementation of very high capacity (and therefore spectral efficient) technologies. Multi-carrier systems, such as Orthogonal Frequency Division Multiplexing (OFDM) and Coherent WDM (CoWDM), are promising candidates. In this paper, we present analytical, numerical, and experimental investigations of the impact of the relative phases between optical subcarriers of CoWDM systems, as well as the effect that the number of independently modulated subcarriers can have on the performance. We numerically demonstrate a five-subcarrier and three-subcarrier 10-GBd CoWDM system with direct detected amplitude shift keying (ASK) and differentially/coherently detected (D) phase shift keying (PSK). The simulation results are compared with experimental measurements of a 32-Gbit/s DPSK CoWDM system in two configurations. The first configuration was a practical 3-modulator array where all three subcarriers were independently modulated, the second configuration being a traditional 2-modulator odd/even configuration, where only odd and even subcarriers were independently modulated. Simulation and experimental results both indicate that the independent modulation implementation has a greater dependency on the relative phases between subcarriers, with a stronger penalty for the center subcarrier than the odd/even modulation scheme.
Resumo:
The investigation of insulation debris generation, transport and sedimentation becomes more important with regard to reactor safety research for pressurized and boiling water reactors, when considering the long-term behaviour of emergency core coolant systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of a disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb or impinge on the emergency core cooling systems. Open questions of generic interest are for example the particle load on strainers and corresponding pressure-drop, the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Science Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation and the development of computational fluid dynamic (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the present paper, the basic concepts for computational fluid dynamic (CFD) modelling are described and experimental results are presented. Further experiments are designed and feasibility studies were performed.
Resumo:
The n-tuple recognition method is briefly reviewed, summarizing the main theoretical results. Large-scale experiments carried out on Stat-Log project datasets confirm this method as a viable competitor to more popular methods due to its speed, simplicity, and accuracy on the majority of a wide variety of classification problems. A further investigation into the failure of the method on certain datasets finds the problem to be largely due to a mismatch between the scales which describe generalization and data sparseness.
Resumo:
The objective of this study was to compare the in vitro dissolution profile of a new rapidly absorbed paracetamol tablet containing sodium bicarbonate (PS) with that of a conventional paracetamol tablet (P), and to relate these by deconvolution and mapping to in vivo release. The dissolution methods used include the standard procedure described in the USP monograph for paracetamol tablets, employing buffer at pH5.8 or 0.05 M HCl at stirrer speeds between 10 and 50 rpm. The mapping process was developed and implemented in Microsoft Excel® worksheets that iteratively calculated the optimal values of scale and shape factors which linked in vivo time to in vitro time. The in vitro-in vivo correlation (IVIVC) was carried out simultaneously for both formulations to produce common mapping factors. The USP method, using buffer at pH5.8, demonstrated no difference between the two products. However, using an acidic medium the rate of dissolution of P but not of PS decreased with decreasing stirrer speed. A significant correlation (r=0.773; p<.00001) was established between in vivo release and in vitro dissolution using the profiles obtained with 0.05 M HCl and a stirrer speed of 30 rpm. The scale factor for optimal simultaneous IVIVC in the fasting state was 2.54 and the shape factor was 0.16; corresponding values for mapping in the fed state were 3.37 and 0.13 (implying a larger in vitro-in vivo time difference but reduced shape difference in the fed state). The current IVIVC explains, in part, the observed in vivo variability of the two products. The approach to mapping may also be extended to different batches of these products, to predict the impact of any changes of in vitro dissolution on in vivo release and plasma drug concentration-time profiles.
Resumo:
In induction machines the tooth frequency losses due to permeance variation constitute a signif'icant, portion of the total loss. In order to predict and estimate these losses it, is essential to obtain a clear understanding of the no-load distribution of the air gap magnetic field and the magnitude of flux pulsation in both stator and rotor teeth. The existing theories and methods by which the air gap permeance variation in a doubly slotted structure is calculated are either empirical or restricted. The main objective of this thesis is to obtain a detailed analysis of the no-load air gap magnetic field distribution and the effect of air gap geometry on the magnitude and waveform of the tooth flux pulsation. In this thesis a detaiiled theoretical and experimental analysis of flux distribution not only leads to a better understanding of the distribution of no-load losses but also provides theoretical analysis for calculating the losses with greater accuracy
Resumo:
Concern has been expressed in the professional literature - borne out by professional experience and observation - that the supply and demand relationship existing between the 13 English and Welsh Library and Information Studies (LIS) Schools (as providers of `First Professional' staff) and the Higher Education Library and Information Services (HE LIS) sector of England and Wales (as one group of employers of such staff) is unsatisfactory and needs attention. An appropriate methodology to investigate this problem was devised. A basic content analysis of Schools' curricular and recruitment material intended for public consumption was undertaken to establish an overview of the LIS initial professional education system in England and Wales, and to identify and analyse any covert messages imparted to readers. This was followed by a mix of Main Questionnaires and Semi-Structured Interviews with appropriate populations. The investigation revealed some serious areas of dissatisfaction by the HE LIS Chiefs with the role and function of the Schools. Considerable divergence of views emerged on the state of the working relationships between the two sectors and on the Schools' successes in meeting the needs of the HE LIS sector and on CPD provision. There were, however, areas of substantial and consistent agreement between the two sectors. The main implications of the findings were that those areas encompassing divergence of views were worrying and needed addressing by both sides. Possible ways forward included recommendations on improving the image of the profession purveyed by the Schools; the forming of closer and more effective inter-sectoral relationships; recognising fully the importance of `practicum' and increasing and sustaining the network of `practicum' providers.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.
Resumo:
Experiments and theoretical modelling have been carried out to predict the performance of a solar-powered liquid desiccant cooling system for greenhouses. We have tested two components of the system in the laboratory using MgCl2 desiccant: (i) a regenerator which was tested under a solar simulator and (ii) a desiccator which was installed in a test duct. Theoretical models have been developed for both regenerator and desiccator and gave good agreement with the experiments. The verified computer model is used to predict the performance of the whole system during the hot summer months in Mumbai, Chittagong, Muscat, Messina and Havana. Taking examples of temperate, sub-tropical, tropical and heat-tolerant tropical crops (lettuce, soya bean, tomato and cucumber respectively) we estimate the extensions in growing seasons enabled by the system. Compared to conventional evaporative cooling, the desiccant system lowers average daily maximum temperatures in the hot season by 5.5-7.5 °C, sufficient to maintain viable growing conditions for lettuce throughout the year. In the case of tomato, cucumber and soya bean the system enables optimal cultivation through most summer months. It is concluded that the concept is technically viable and deserves testing by means of a pilot installation at an appropriate location.
Resumo:
In their search for innovative policy solutions to complex social problematics, local governance practitioners will look to synergising specific policy guidance from government departments with conceptual scientific research outputs. UK academics are also now expected to emphasise the relevance of their research and to increase its utilisation by practitioners. Away from utilitarian pressures, academics from applied discipline, such as Public Administration and Local Government Studies are increasingly drawn to the benefits of co-produced research. Despite the pressure for more co-research there are few opportunities for practitioners and academics to nurture relationships that would support close collaboration. This paper looks at the opportunity for closer collaboration when practitioners undertake research degrees, in order to enhance their cognitive skills and develop greater scientific knowledge of particular policy domains. If this route to closer collaboration is to succeed, it will require academics to think differently about their relationship with practitioner-students.
Resumo:
A fine control of the microstructured polymer fiber Bragg grating spectrum properties, such as maximum reflected power and 3-dB bandwidth, through acousto-optic modulation is presented. For simulation purposes, the device is modelled as a single structure, comprising a silica horn and a fiber Bragg grating. For similar sized structures a good correlation between the numerical results and the experimental data is obtained, allowing the strain field to be completely characterized along the whole structure. It is also shown that the microstructured polymer fiber Bragg grating requires less effort from the piezoelectric actuator to produce modification in the grating spectrum when compared with a silica fiber Bragg grating. This technique has potential to be applied on tunable optical filters and tunable cavities for photonic applications.