2 resultados para Matrices -- Problems, exercises, etc.
em Aston University Research Archive
Resumo:
Common problems encountered in clinical sensing are those of non-biocompatibility, and slow response time of the device. The latter, also applying to chemical sensors, is possibly due to a lack of understanding of polymer support or membrane properties and hence failure to optimise membranes chosen for specific sensor applications. Hydrogels can be described as polymers which swell in water. In addition to this, the presence of water in the polymer matrix offers some control of biocompatibility. They thus provide a medium through which rapid transport of a sensed species to an incorporated reagent could occur. This work considers the feasibility of such a system, leading to the design and construction of an optical sensor test bed. The development of suitable membrane systems and of suitable coating techniques in order to apply them to the fibre optics is described. Initial results obtained from hydrogel coatings implied that the refractive index change in the polymer matrix, due to a change in water content with pH is the major factor contributing to the sensor response. However the presence of the colourimetric reagent was also altering the output signal obtained. An analysis of factors contributing to the overall response, such as colour change and membrane composition were made on both the test bed, via optical response, and on whole membranes via measurement of water content change. The investigation of coatings with low equilibrium water contents, of less than 10% was carried out and in fact a clearer signal response from the test bed was noted. Again these membranes were suprisingly responding via refractive index change, with the reagent playing a primary role in obtaining a sensible or non-random response, although not in a colourimetric fashion. A photographic study of these coatings revealed some clues as to the physical nature of these coatings and hence partially explained this phenomenon. A study of the transport properties of the most successful membrane, on a coated wire electrode and also on the fibre optic test bed, in a series of test environments, indicated that the reagent was possibly acting as an ion exchanger and hence having a major influence on transport and therefore sensor characteristics.
Resumo:
This study has concentrated on the development of an impact simulation model for use at the sub-national level. The necessity for the development of this model was demonstrated by the growth of local economic initiatives during the 1970's, and the lack of monitoring and evaluation exercise to assess their success and cost-effectiveness. The first stage of research involved the confirmation that the potential for micro-economic and spatial initiatives existed. This was done by identifying the existence of involuntary structural unemployment. The second stage examined the range of employment policy options from the macroeconomic, micro-economic and spatial perspectives, and focused on the need for evaluation of those policies. The need for spatial impact evaluation exercise in respect of other exogenous shocks, and structural changes was also recognised. The final stage involved the investigation of current techniques of evaluation and their adaptation for the purpose in hand. This led to a recognition of a gap in the armoury of techniques. The employment-dependency model has been developed to fill that gap, providing a low-budget model, capable of implementation at the small area level and generating a vast array of industrially disaggregate data, in terms of employment, employment-income, profits, value-added and gross income, related to levels of United Kingdom final demand. Thus providing scope for a variety of impact simulation exercises.