10 resultados para Materials processing
em Aston University Research Archive
Resumo:
This thesis considers two basic aspects of impact damage in composite materials, namely damage severity discrimination and impact damage location by using Acoustic Emissions (AE) and Artificial Neural Networks (ANNs). The experimental work embodies a study of such factors as the application of AE as Non-destructive Damage Testing (NDT), and the evaluation of ANNs modelling. ANNs, however, played an important role in modelling implementation. In the first aspect of the study, different impact energies were used to produce different level of damage in two composite materials (T300/914 and T800/5245). The impacts were detected by their acoustic emissions (AE). The AE waveform signals were analysed and modelled using a Back Propagation (BP) neural network model. The Mean Square Error (MSE) from the output was then used as a damage indicator in the damage severity discrimination study. To evaluate the ANN model, a comparison was made of the correlation coefficients of different parameters, such as MSE, AE energy, AE counts, etc. MSE produced an outstanding result based on the best performance of correlation. In the second aspect, a new artificial neural network model was developed to provide impact damage location on a quasi-isotropic composite panel. It was successfully trained to locate impact sites by correlating the relationship between arriving time differences of AE signals at transducers located on the panel and the impact site coordinates. The performance of the ANN model, which was evaluated by calculating the distance deviation between model output and real location coordinates, supports the application of ANN as an impact damage location identifier. In the study, the accuracy of location prediction decreased when approaching the central area of the panel. Further investigation indicated that this is due to the small arrival time differences, which defect the performance of ANN prediction. This research suggested increasing the number of processing neurons in the ANNs as a practical solution.
Resumo:
Recent work has highlighted the potential of sol-gel-derived calcium silicate glasses for the regeneration or replacement of damaged bone tissue. The work presented herein provides new insight into the processing of bioactive calcia-silica sol-gel foams, and the reaction mechanisms associated with them when immersed in vitro in a simulated body fluid (SBF). Small-angle X-ray scattering and wide-angle X-ray scattering (diffraction) have been used to study the stabilization of these foams via heat treatment, with analogous in situ time-resolved data being gathered for a foam immersed in SBF. During thermal processing, pore sizes have been identified in the range of 16.5-62.0 nm and are only present once foams have been heated to 400 degrees C and above. Calcium nitrate crystallites were present until foams were heated to 600 degrees C; the crystallite size varied from 75 to 145 nm and increased in size with heat treatment up to 300 degrees C, then decreased in size down to 95 rim at 400 degrees C. The in situ time-resolved data show that the average pore diameter decreases as a function of immersion time in SBF, as calcium phosphates grow on the glass surfaces. Over the same time, Bragg peaks indicative of tricalcium phosphate were evident after only 1-h immersion time, and later, hydroxycarbonate apatite was also seen. The hydroxycarbonate apatite appears to have preferred orientation in the (h,k,0) direction.
Resumo:
Aggregation and caking of particles are common severe problems in many operations and processing of granular materials, where granulated sugar is an important example. Prevention of aggregation and caking of granular materials requires a good understanding of moisture migration and caking mechanisms. In this paper, the modeling of solid bridge formation between particles is introduced, based on moisture migration of atmospheric moisture into containers packed with granular materials through vapor evaporation and condensation. A model for the caking process is then developed, based on the growth of liquid bridges (during condensation), and their hardening and subsequent creation of solid bridges (during evaporation). The predicted caking strengths agree well with some available experimental data on granulated sugar under storage conditions.
Resumo:
The materials management function is always a major concern to management of any industrial organization, since high inventory and an inefficient procurement process significantly affect profitability. Problems multiply due to the current dynamic business environment in many countries. Hence, existing materials planning and procurement process and inventory management systems require a review. This article shows a radical improvement in the materials management function for an Indian petroleum refinery through business process re-engineering (BPR) by analyzing the current process, identifying key issues, deriving paradigm shifts and developing re-engineered processes through customer value analysis. BPR has been carried out on the existing processes of "material planning and procurement" and "warehousing and surplus disposal.
Resumo:
The aging responses of 2124 Al-SiC p metal matrix composite (MMC) and unreinforced matrix alloy are studied and related to variations in tensile properties. The MMC is aged from Wo starting conditions: (i) stretched and naturally aged and (ii) re-solution treated. Accelerated aging occurs in both MMC conditions compared with unreinforced alloy. Tensile strengths and elastic moduli are improved in the MMC compared with the alloy, but ductility is reduced. Stretched MMC exhibits higher strength but lower ductility and modulus than re-solutioned MMC. The re-solutioned MMC fails by microvoid coalescence in low aging conditions, and by void nucleation and shear in high aging conditions. Failure of the stretched MMC initiates at the surface at specimen shoulders, illustrating the increased notch sensitivity of this condition, and propagates via a zigzag shear fracture mode. Zigzag facet size increases on gross aging. Particle fracture occurs during tensile failure, but also before testing as a result of the manufacturing process. © 1995 The Institute of Materials.
Resumo:
Poly(L-lactide-co-ε-caprolactone) 75:25% mol, P(LL-co-CL), was synthesized via bulk ring-opening polymerisation (ROP) using a novel tin(II)alkoxide initiator, [Sn(Oct)]2DEG, at 130oC for 48 hrs. The effectiveness of this initiator was compared withthe well-known conventional tin(II) octoateinitiator, Sn(Oct)2. The P(LL-co-CL) copolymersobtained were characterized using a combination of analytical technique including: nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), thermogravimetry (TG) and gel permeation chromatography (GPC). The P(LL-co-CL) was melt-spun into monofilament fibres of uniform diameter and smooth surface appearance. Modification of the matrix morphology was then built into the as-spun fibresvia a series of controlled off-line annealing and hot-drawing steps. © (2014) Trans Tech Publications, Switzerland.
Resumo:
X-ray photoelectron spectroscopy (XPS) can play an important role in guiding the design of new materials, tailored to meet increasingly stringent constraints on performance devices, by providing insight into their surface compositions and the fundamental interactions between the surfaces and the environment. This chapter outlines the principles and application of XPS as a versatile, chemically specific analytical tool in determining the electronic structures and (usually surface) compositions of constituent elements within diverse functional materials. Advances in detector electronics have opened the way for development of photoelectron microscopes and instruments with XPS imaging capabilities. Advances in surface science instrumentation to enable time-resolved spectroscopic measurements offer exciting opportunities to quantitatively investigate the composition, structure and dynamics of working catalyst surfaces. Attempts to study the effects of material processing in realistic environments currently involves the use of high- or ambient-pressure XPS in which samples can be exposed to reactive environments.
Resumo:
This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.
Resumo:
Carbon is a versatile material which is composed of different allotropes, and also come in with different structures. Carbon nanofibres (CNFs) is one dimensional carbon nanomaterials, which have exhibited superior mechanical properties, great specific area, good electrical conductivity, good biocompatibility, and ease of modification. In addition to the lower cost associated to compare with carbon nanotubes (CNTs), CNFs have been attracted in numerous applications, such as reinforcement materials, filtrations, Li-ion battery, supercapacitor as well as tissue engineering, just to list a few. Therefore, it is a great deal to understand the relationship between the fabrication conditions and the characteristics of the resulted CNFs. In this project, electrospun PAN NFs were used as precursor material to fabricate carbon nanofibres. In order to produce CNFs with good morphology, the processing parameters of PAN nanofibres by electrospinning was optimized toward to the morphology at solution concentration of 12 wt%. The optimized processing parameters at given concentration were 16 kV, 14 cm and 1.5 mL/h, which led to the formation of PAN NFs with average fibre diameter of approximately 260 nm. Along with the effect of processing parameter study, the effect of concentration on the morphology was also carried out at optimized processing parameters. It was found that by increasing concentration of PAN solution from 2 to 16%, the resulted PAN transformed from beads only, to beaded fibres and finally to smooth fibres. With further increasing concentration the morphology of smooth fibres remain with increase in the fibre diameter. Electrospun PAN NFs with average fibre of 306 nm was selected to be converted into CNFs by using standard heating procedures, stabilisation in air at 280 °C and carbonization in N2. The effect of carbonization temperature ranging from 500 to 1000 °C was investigated, by using SEM, FTIR, Raman, and Impedance spectroscopy. With increasing carbonization temperature from 500 to 1000 °C, the diameter of NFs was decreased from 260 to 187, associated with loss of almost all functional groups of NFs. It was indicated by Raman results, that the graphitic crystallite size was increased from 2.62 to 5.24 nm, and the activation energy obtained for this growth was 7570 J/mol. Furthermore, impedance results (i.e. Cole-Cole plot) revealed that the electrical characteristic of CNFs transitioned from being insulating to electrically conducting in nature, suggested by the different electrical circuits extracted from Cole-Cole plots with carbonization temperature from 500 to 800 °C. The carbonization on PAN NFs with diameter of ~431nm was carried out by using novel route, microwave plasma enhance chemical vapour deposition (MPECVD) process. To compare with carbonized PAN NFs by using conventional route, MPECVD was not only able to facilitate carbonization process, but more interestingly can form carbon nanowalls (CNWs) grown on the surfaces of carbonized PAN NFs. Suggested by the unique morphology, the potential applications for the resulted carbon fibrous hybrid materials are supercapacitor electrode material, filtrations, and etc., The method developed in this project required one step less, compared with other literature. Therefore, using MPECVD on stabilised PAN NFs is proposed as economical, and straightforward approach towards mass production of carbon fibrous hybrid materials containing CNWs.
Resumo:
A poly(L-lactide-co-caprolactone) copolymer, P(LL-co-CL), of composition 75:25 mol% was synthesized via the bulk ring-opening copolymerization of L-lactide and ε-caprolactone using a novel bis[tin(II) monooctoate] diethylene glycol coordination-insertion initiator, OctSn-OCH2CH2OCH2CH2O-SnOct. The P(LL-co-CL) copolymer obtained was characterized by a combination of analytical techniques, namely nuclear magnetic resonance spectroscopy, gel permeation chromatography, dilute-solution viscometry, differential scanning calorimetry, and thermogravimetric analysis. For processing into a monofilament fiber, the copolymer was melt spun with minimal draw to give a largely amorphous and unoriented as-spun fiber. The fiber's oriented semicrystalline morphology, necessary to give the required balance of mechanical properties, was then developed via a sequence of controlled offline hot-drawing and annealing steps. Depending on the final draw ratio, the fibers obtained had tensile strengths in the region of 200–400 MPa.