28 resultados para Materials management - Data processing
em Aston University Research Archive
Resumo:
The materials management function is always a major concern to management of any industrial organization, since high inventory and an inefficient procurement process significantly affect profitability. Problems multiply due to the current dynamic business environment in many countries. Hence, existing materials planning and procurement process and inventory management systems require a review. This article shows a radical improvement in the materials management function for an Indian petroleum refinery through business process re-engineering (BPR) by analyzing the current process, identifying key issues, deriving paradigm shifts and developing re-engineered processes through customer value analysis. BPR has been carried out on the existing processes of "material planning and procurement" and "warehousing and surplus disposal.
Resumo:
This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.
Resumo:
Materials management function is always a major concern to the management of any industrial organisation as high inventory and an inefficient procurement process affect the profitability to a great extent. Problems multiply due to a very current business environment in India. Hence, existing materials planning and procurement processes and inventory management systems require a re-look with respect to a changing business environment. This study shows a radical improvement in materials management function of an Indian petroleum refinery through business process re-engineering (BPR) by analysing current processes, identifying key issues, deriving paradigm shifts and developing re-engineered processes through customer value analysis. BPR has been carried out on existing processes of “materials planning and procurement” and “warehousing and surplus disposal”. The re-engineered processes for materials management function trigger a few improvement projects that were identified by the group of executives who took part in the re-engineering exercise. Those projects were implemented in an integrated framework with the application of the state of art information technology tools.
Resumo:
Photonic technologies for data processing in the optical domain are expected to play a major role in future high-speed communications. Nonlinear effects in optical fibres have many attractive features and great, but not yet fully explored potential for optical signal processing. Here we provide an overview of our recent advances in developing novel techniques and approaches to all-optical processing based on fibre nonlinearities.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing. © 2005 IEEE.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
GraphChi is the first reported disk-based graph engine that can handle billion-scale graphs on a single PC efficiently. GraphChi is able to execute several advanced data mining, graph mining and machine learning algorithms on very large graphs. With the novel technique of parallel sliding windows (PSW) to load subgraph from disk to memory for vertices and edges updating, it can achieve data processing performance close to and even better than those of mainstream distributed graph engines. GraphChi mentioned that its memory is not effectively utilized with large dataset, which leads to suboptimal computation performances. In this paper we are motivated by the concepts of 'pin ' from TurboGraph and 'ghost' from GraphLab to propose a new memory utilization mode for GraphChi, which is called Part-in-memory mode, to improve the GraphChi algorithm performance. The main idea is to pin a fixed part of data inside the memory during the whole computing process. Part-in-memory mode is successfully implemented with only about 40 additional lines of code to the original GraphChi engine. Extensive experiments are performed with large real datasets (including Twitter graph with 1.4 billion edges). The preliminary results show that Part-in-memory mode memory management approach effectively reduces the GraphChi running time by up to 60% in PageRank algorithm. Interestingly it is found that a larger portion of data pinned in memory does not always lead to better performance in the case that the whole dataset cannot be fitted in memory. There exists an optimal portion of data which should be kept in the memory to achieve the best computational performance.
Resumo:
This paper reviews some basic issues and methods involved in using neural networks to respond in a desired fashion to a temporally-varying environment. Some popular network models and training methods are introduced. A speech recognition example is then used to illustrate the central difficulty of temporal data processing: learning to notice and remember relevant contextual information. Feedforward network methods are applicable to cases where this problem is not severe. The application of these methods are explained and applications are discussed in the areas of pure mathematics, chemical and physical systems, and economic systems. A more powerful but less practical algorithm for temporal problems, the moving targets algorithm, is sketched and discussed. For completeness, a few remarks are made on reinforcement learning.
Resumo:
The materials management function is always a major concern to the management of any organisation as high inventory and inefficient procurement processes have a significant effect on profitability. The problems multiply in the face of a very dynamic business environment, as is the present case in India. Hence, the existing system of materials planning, procurement processes and inventory management require reviewing with respect to the changed business environment. This study shows a radical improvement in materials procurement function of an Indian petroleum refinery through Business Process Reengineering (BPR) by analysing current process, identifying key issues, deriving paradigm shifts and developing reengineered processes through customer value analysis. BPR has been carried out on existing processes of 'material planning and procurement' and 'warehousing and surplus disposal'. The reengineered processes for the materials management function triggered several improvement projects that were identified by the group of executives who took part in the reengineering exercise. Those projects were implemented in an integrated framework, with the application of state of the art information technology tools and building partnership alliance among all stakeholders. Considerable improvements in overall functions of the organisation are observed, along with financial benefits. Copyright © 2006 Inderscience Enterprises Ltd.
Resumo:
Purpose – The paper assesses the extent to which China’s comparative advantage in manufacturing has shifted towards higher-tech sectors between 1987 and 2005 and proposes possible explanations for the shift. Design/methodology/approach – Revealed comparative advantage (RCA) indices for 27 product groups, representing high-, medium and low-tech sectors have been calculated. Examination of international market attractiveness complements the RCA analysis. Findings for selected sectors are evaluated in the context of other evidence. Findings – While China maintains its competitiveness in low-tech labour intensive products, it has gained RCA in selected medium-tech sectors (e.g. office machines and electric machinery) and the high-tech telecommunications and automatic data processing equipment sectors. Evidence from firm and sector specific studies suggests that improved comparative advantage in medium and high-tech sectors is based on capabilities developing through combining international technology transfer and learning. Research limitations/implications – The quantitative analysis does not explain the shifts in comparative advantage, though the paper suggests possible explanations. Further research at firm and sector levels is required to understand the underlying capability development of Chinese enterprises and the relative competitiveness of Chinese and foreign invested enterprises. Practical implications – Western companies should take account of capability development in China in forming their international manufacturing strategies. The rapid shifts in China’s comparative advantage have lessons for other industrialising countries. Originality/value – While RCA is a well-known methodology, its application at the disaggregated product group level combined with market attractiveness assessment is distinctive. The paper provides a broad assessment of changes in Chinese manufacturing as a basis for further research on capability development at firm and sector levels.
Resumo:
All-optical data processing is expected to play a major role in future optical communications. The fiber nonlinear optical loop mirror (NOLM) is a valuable tool in optical signal processing applications. This paper presents an overview of our recent advances in developing NOLM-based all-optical processing techniques for application in fiber-optic communications. The use of in-line NOLMs as a general technique for all-optical passive 2R (reamplification, reshaping) regeneration of return-to-zero (RZ) on-off keyed signals in both high-speed, ultralong-distance transmission systems and terrestrial photonic networks is reviewed. In this context, a theoretical model enabling the description of the stable propagation of carrier pulses with periodic all-optical self-regeneration in fiber systems with in-line deployment of nonlinear optical devices is presented. A novel, simple pulse processing scheme using nonlinear broadening in normal dispersion fiber and loop mirror intensity filtering is described, and its employment is demonstrated as an optical decision element at a RZ receiver as well as an in-line device to realize a transmission technique of periodic all-optical RZ-nonreturn-to-zero-like format conversion. The important issue of phase-preserving regeneration of phase-encoded signals is also addressed by presenting a new design of NOLM based on distributed Raman amplification in the loop fiber. © 2008 Elsevier Inc. All rights reserved.