3 resultados para Massive modularity
em Aston University Research Archive
Resumo:
This paper discusses the possible contributions from modularity and industrial condominiums towards enhancing environmental performance in the automotive industry. The research described in this study is underpinned by a review of journal articles and books on the topics of: modularity of production systems; green operations practices, and the automotive industry and sustainability. The methodology is based on theoretical analysis of the contribution of the modular production system characteristics used in the automotive industry for Green Operations Practices (GOP). The following GOPs were considered: green buildings, eco-design, green supply chains, greener manufacturing, and reverse logistics. The results are theoretical in nature; however, due to the small number of studies that investigate the relationship between modularity and sustainability, this work is relevant to increase knowledge in academic circles and among practitioners in order to understand the possible environmental benefits from modular production systems. For instance, based upon our analysis, we could deduce that the existing modular production systems in the automotive industry may contribute in different ways to the implementation of GOPs. In all types of modularity, product simplification through the use of modules can enhance environmental performance and facilitate further activities such as maintenance and repair contributing to a longer life of cars on the road. Moreover, modules will make automobiles easier to disassembly, so increasing the chances of reuse of valuable components and a better final disposal of scrap. Regarding the potential benefits of each type of modularity, it is expected that modular consortia will have a better integration of environmental practices with suppliers and seize on high efficiency during manufacturing and logistics compared with conventional production systems.
Resumo:
This paper discusses the possible contributions from modularity and industrial condominiums towards enhancing environmental performance in the automotive industry. The research described in this study is underpinned by a review of journal articles and books on the topics of: modularity of production systems; green operations practices, and the automotive industry and sustainability. The methodology is based on theoretical analysis of the contribution of the modular production system characteristics used in the automotive industry for Green Operations Practices (GOP). The following GOPs were considered: green buildings, eco design, green supply chains, greener manufacturing, and reverse logistics. The results are theoretical in nature; however, due to the small number of studies that investigate the relationship between modularity and sustainability, this work is relevant to increase knowledge in academic circles and among practitioners in order to understand the possible environmental benefits from modular production systems.
Resumo:
We explored the role of modularity as a means to improve evolvability in populations of adaptive agents. We performed two sets of artificial life experiments. In the first, the adaptive agents were neural networks controlling the behavior of simulated garbage collecting robots, where modularity referred to the networks architectural organization and evolvability to the capacity of the population to adapt to environmental changes measured by the agents performance. In the second, the agents were programs that control the changes in network's synaptic weights (learning algorithms), the modules were emerged clusters of symbols with a well defined function and evolvability was measured through the level of symbol diversity across programs. We found that the presence of modularity (either imposed by construction or as an emergent property in a favorable environment) is strongly correlated to the presence of very fit agents adapting effectively to environmental changes. In the case of learning algorithms we also observed that character diversity and modularity are also strongly correlated quantities. © 2014 Springer Science+Business Media New York.