67 resultados para Masonry, FRP, fibers

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ε-caprolactone) (PCL) fibers produced by wet spinning from solutions in acetone under low-shear (gravity-flow) conditions resulted in fiber strength of 8 MPa and stiffness of 0.08 Gpa. Cold drawing to an extension of 500% resulted in an increase in fiber strength to 43 MPa and stiffness to 0.3 GPa. The growth rate of human umbilical vein endothelial cells (HUVECs) (seeded at a density of 5 × 104 cells/mL) on as-spun fibers was consistently lower than that measured on tissue culture plastic (TCP) beyond day 2. Cell proliferation was similar on gelatin-coated fibers and TCP over 7 days and higher by a factor of 1.9 on 500% cold-drawn PCL fibers relative to TCP up to 4 days. Cell growth on PCL fibers exceeded that on Dacron monofilament by at least a factor of 3.7 at 9 days. Scanning electron microscopy revealed formation of a cell layer on samples of cold-drawn and gelatin-coated fibers after 24 hours in culture. Similar levels of ICAM-1 expression by HUVECs attached to PCL fibers and TCP were measured using RT-PCR and flow cytometry, indicative of low levels of immune activation. Retention of a specific function of HUVECs attached to PCL fibers was demonstrated by measuring their immune response to lipopolysaccharide. Levels of ICAM-1 expression increased by approximately 11% in cells attached to PCL fibers and TCP. The high fiber compliance, favorable endothelial cell proliferation rates, and retention of an important immune response of attached HUVECS support the use of gravity spun PCL fibers for three-dimensional scaffold production in vascular tissue engineering. © Mary Ann Liebert, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reported are observations and measurements of the inscription of fibre Bragg gratings in two different types of microstructured polymer optical fibre: few-moded and endlessly single mode. Contrary to FBG inscription in silica microstructured fibre, where high energy laser pulses are a prerequisite, we have successfully used a low power CW laser source operating at 325nm to produce 1-cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have systematically measured the differential stress-optic coefficient, ?C, in a number of poly(methyl methacrylate) (PMMA) fibers drawn with different stress, ranging from 2 up to 27 MPa. ?C was determined in transverse illumination by measuring the dependence of birefringence on additional axial stress applied to the fiber. Our results show that ?C in PMMA fibers has a negative sign and ranges from -4.5 to -4.5×10-12 Pa-1, depending on the drawing stress. Increase of the drawing stress results in greater initial fiber birefringence and lower ?C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the thermal characteristics of Bragg gratings fabricated in polymer optical fibers. We have observed a permanent shift in the grating wavelength at room temperature which occurs when the grating has been heated above a threshold temperature. This threshold temperature is dependent on the thermal history of the grating, and we attribute the effect to a shrinking of the fiber. This effect can be avoided by annealing the fiber before grating inscription, resulting in a linear response with temperature and an increased linear operating temperature range of the grating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of micro-channels in single-mode optical fibers is demonstrated using focused femtosecond laser processing and chemical etching. Straight line micro-channels are achieved based on a simple technique which overcomes limitations imposed by the fiber curved surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, Fiber Bragg grating (FBG) structures have been inscribed in single-core passive germanate and three-core passive and active tellurite glass fibers using 800nm femtosecond (fs) laser and phase mask technique. With fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540 and 1033nm in the germanate glass fiber and 2nd order resonances at ~1694 and ~1677nm with strengths up to 14dB in all three cores in the tellurite fiber were observed. Thermal responsivities of the FBGs made in these mid-IR glass fibers were characterized, showing average temperature responsivity ~20pm/°C. Strain responsivities of the FBGs in germanate glass fiber were measured to be 1.219pm/µe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report two recent studies dealing with the evolution of parabolic pulses in normally dispersive fibres. On the one hand, the nonlinear reshaping from a Gaussian intensity profile towards the asymptotic parabolic shape is experimentally investigated in a Raman amplifier. On the other hand, the significant impact of the fourth order dispersion on a passive propagation is theoretically discussed: we numerically demonstrate flat-top, coherent supercontinuum generation in an all-normal dispersion-flattened photonic crystal fiber. This shape is associated to a strong reshaping of the temporal profile what becomes triangular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By spectral analysis, and using joint time-frequency representations, we present the theoretical basis to design invariant band-limited Airy pulses with an arbitrary degree of robustness, and an arbitrary range of single mode fiber chromatic dispersion. The numerically simulated examples confirm the theoretically predicted pulse partial invariance in the propagation of the pulse in the fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model is developed to describe the propagation of ultra-short optical pulses in fiber transmission systems in the quasi-linear regime, with periodically inserted in-line lumped nonlinear optical devices. Stable autosoliton solutions are obtained for a particular application of the general theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the existence of a kind of squeezing in photonic crystal fibers which is conceptually intermediate between four-wave-mixing-induced squeezing in which all the participant waves are monochromatic waves, and self-phase-modulation-induced squeezing for a single pulse in a coherent state. This hybrid squeezing occurs when an arbitrary short soliton emits quasimonochromatic resonant radiation near a zero-group-velocity-dispersion point of the fiber. Photons around the resonant frequency become strongly correlated due to the presence of the classical soliton, and a reduction of the quantum noise below the shot-noise level is predicted. © 2011 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production and characterization of narrow bandwidth fiber Bragg gratings (FBGs) in different spectral regions using polymer optical fibers (POFs) is reported. Narrow bandwidth FBGs are increasingly important for POF transmission systems, WDM technology and sensing applications. Long FBGs with resonance wavelength around 600-nm, 850-nm and 1550-nm in several types of polymer optical fibers were inscribed using a scanning technique with a short optical path. The technique allowed the inscription in relative short periods of time. The obtained 3-dB bandwidth varies from 0.22 down to 0.045 nm considering a Bragg grating length between 10 and 25-mm, respectively.