8 resultados para Masks (Sculpture)
em Aston University Research Archive
Resumo:
In experiments reported elsewhere at this conference, we have revealed two striking results concerning binocular interactions in a masking paradigm. First, at low mask contrasts, a dichoptic masking grating produces a small facilitatory effect on the detection of a similar test grating. Second, the psychometric slope for dichoptic masking starts high (Weibull ß~4) at detection threshold, becomes low (ß~1.2) in the facilitatory region, and then unusually steep at high mask contrasts (ß~5.5). Neither of these results is consistent with Legge's (1984 Vision Research 24 385 - 394) model of binocular summation, but they are predicted by a two-stage gain control model in which interocular suppression precedes binocular summation. Here, we pose a further challenge for this model by using a 'twin-mask' paradigm (cf Foley, 1994 Journal of the Optical Society of America A 11 1710 - 1719). In 2AFC experiments, observers detected a patch of grating (1 cycle deg-1, 200 ms) presented to one eye in the presence of a pedestal in the same eye and a spatially identical mask in the other eye. The pedestal and mask contrasts varied independently, producing a two-dimensional masking space in which the orthogonal axes (10X10 contrasts) represent conventional dichoptic and monocular masking. The resulting surface (100 thresholds) confirmed and extended the observations above, and fixed the six parameters in the model, which fitted the data well. With no adjustment of parameters, the model described performance in a further experiment where mask and test were presented to both eyes. Moreover, in both model and data, binocular summation was greater than a factor of v2 at detection threshold. We conclude that this two-stage nonlinear model, with interocular suppression, gives a good account of early binocular processes in the perception of contrast. [Supported by EPSRC Grant Reference: GR/S74515/01]
Resumo:
We report the control of surface relief grating parameters and roughness for phase masks produced using e-beam lithography (EBL) and reactive ion etching (RIE). The relationships between processing conditions, grating parameters, surface roughness and the diffraction efficiency of the zeroth and the two first order transmitted beams are discussed.
Resumo:
Contrast masking from parallel grating surrounds (doughnuts) and superimposed orthogonal masks have different characteristics. However, it is not known whether the saturation of the underlying suppression that has been found for parallel doughnut masks depends on (i) relative mask and target orientation, (ii) stimulus eccentricity or (iii) surround suppression. We measured contrast-masking functions for target patches of grating in the fovea and in the periphery for cross-oriented superimposed and doughnut masks and parallel doughnut masks. When suppression was evident, the factor that determined whether it accelerated or saturated was whether the mask stimulus was crossed or parallel. There are at least two interpretations of the asymptotic behaviour of the parallel surround mask. (1) Suppression arises from pathways that saturate with (mask) contrast. (2) The target is processed by a mechanism that is subject to surround suppression at low target contrasts, but a less sensitive mechanism that is immune from surround suppression ‘breaks through’ at higher target contrasts. If the mask can be made less potent, then masking functions should shift downwards, and sideways for the two accounts, respectively. We manipulated the potency of the mask by varying the size of the hole in a parallel doughnut mask. The results provided strong evidence for the first account but not the second. On the view that response compression becomes more severe progressing up the visual pathway, our results suggest that superimposed cross-orientation suppression precedes orientation tuned surround suppression. These results also reveal a previously unrecognized similarity between surround suppression and crowding (Pelli, Palomares, & Majaj, 2004).
Resumo:
In human vision, the response to luminance contrast at each small region in the image is controlled by a more global process where suppressive signals are pooled over spatial frequency and orientation bands. But what rules govern summation among stimulus components within the suppressive pool? We addressed this question by extending a pedestal plus pattern mask paradigm to use a stimulus with up to three mask components: a vertical 1 c/deg pedestal, plus pattern masks made from either a grating (orientation = -45°) or a plaid (orientation = ±45°), with component spatial frequency of 3 c/deg. The overall contrast of both types of pattern mask was fixed at 20% (i.e., plaid component contrasts were 10%). We found that both of these masks transformed conventional dipper functions (threshold vs. pedestal contrast with no pattern mask) in exactly the same way: The dipper region was raised and shifted to the right, but the dipper handles superimposed. This equivalence of the two pattern masks indicates that contrast summation between the plaid components was perfectly linear prior to the masking stage. Furthermore, the pattern masks did not drive the detecting mechanism above its detection threshold because they did not abolish facilitation by the pedestal (Foley, 1994). Therefore, the pattern masking could not be attributed to within-channel masking, suggesting that linear summation of contrast signals takes place within a suppressive contrast gain pool. We present a quantitative model of the effects and discuss the implications for neurophysiological models of the process. © 2004 ARVO.
Resumo:
We report the control of surface relief grating parameters and roughness for phase masks produced using e-beam lithography (EBL) and reactive ion etching (RIE). The relationships between processing conditions, grating parameters, surface roughness and the diffraction efficiency of the zeroth and the two first order transmitted beams are discussed.
Resumo:
We present femtosecond laser inscribed phase masks for the inscription of Bragg gratings in optical fibres. The principal advantage is the flexibility afforded by the femtosecond laser inscription, where sub-surface structures define the phase mask period and mask properties. The masks are used to produce fibre Bragg gratings having different orders according to the phase mask period. The work demonstrates the incredible flexibility of femtosecond lasers for the rapid prototyping of complex and reproducible mask structures. We also consider three-beam interference effects, a consequence of the zeroth-order component present in addition to higher-order diffraction components. © 2012 SPIE.