19 resultados para Mary L. Tanke
em Aston University Research Archive
Resumo:
The region of tenascin-C containing only alternately spliced fibronectin type-III repeat D (fnD) increases neurite outgrowth by itself and also as part of tenascin-C. We previously localized the active site within fnD to an eight amino acid sequence unique to tenascin-C, VFDNFVLK, and showed that the amino acids FD and FV are required for activity. The purpose of this study was to identify the neuronal receptor that interacts with VFDNFVLK and to investigate the hypothesis that FD and FV are important for receptor binding. Function-blocking antibodies against both alpha7 and beta1 integrin subunits were found to abolish VFDNFVLK-mediated process extension from cerebellar granule neurons. VFDNFVLK but not its mutant, VSPNGSLK, induced clustering of neuronal beta1 integrin immunoreactivity. This strongly implicates FD and FV as important structural elements for receptor activation. Moreover, biochemical experiments revealed an association of the alpha7beta1 integrin with tenascin-C peptides containing the VFDNFVLK sequence but not with peptides with alterations in FD and/or FV. These findings are the first to provide evidence that the alpha7beta1 integrin mediates a response to tenascin-C and the first to demonstrate a functional role for the alpha7beta1 integrin receptor in CNS neurons.
Resumo:
Background - Bipolar disorder is frequently misdiagnosed as major depressive disorder, delaying appropriate treatment and worsening outcome for many bipolar individuals. Emotion dysregulation is a core feature of bipolar disorder. Measures of dysfunction in neural systems supporting emotion regulation might therefore help discriminate bipolar from major depressive disorder. Methods - Thirty-one depressed individuals—15 bipolar depressed (BD) and 16 major depressed (MDD), DSM-IV diagnostic criteria, ages 18–55 years, matched for age, age of illness onset, illness duration, and depression severity—and 16 age- and gender-matched healthy control subjects performed two event-related paradigms: labeling the emotional intensity of happy and sad faces, respectively. We employed dynamic causal modeling to examine significant among-group alterations in effective connectivity (EC) between right- and left-sided neural regions supporting emotion regulation: amygdala and orbitomedial prefrontal cortex (OMPFC). Results - During classification of happy faces, we found profound and asymmetrical differences in EC between the OMPFC and amygdala. Left-sided differences involved top-down connections and discriminated between depressed and control subjects. Furthermore, greater medication load was associated with an amelioration of this abnormal top-down EC. Conversely, on the right side the abnormality was in bottom-up EC that was specific to bipolar disorder. These effects replicated when we considered only female subjects. Conclusions - Abnormal, left-sided, top-down OMPFC–amygdala and right-sided, bottom-up, amygdala–OMPFC EC during happy labeling distinguish BD and MDD, suggesting different pathophysiological mechanisms associated with the two types of depression.
Resumo:
Background Emotional-processing inhibition has been suggested as a mechanism underlying some of the clinical features of depersonalization and/or derealization. In this study, we tested the prediction that autonomic response to emotional stimuli would be reduced in patients with depersonalization disorder. Methods The skin conductance responses of 15 patients with chronic depersonalization disorder according to DSM-IV, 15 controls, and 11 individuals with anxiety disorders according to DSM-IV, were recorded in response to nonspecific elicitors (an unexpected clap and taking a sigh) and in response to 15 randomized pictures with different emotional valences: 5 unpleasant, 5 pleasant, and 5 neutral. Results The skin conductance response to unpleasant pictures was significantly reduced in patients with depersonalization disorder (magnitude of 0.017 µsiemens in controls and 0.103 µsiemens in patients with anxiety disorders; P = .01). Also, the latency of response to these stimuli was significantly prolonged in the group with depersonalization disorder (3.01 seconds compared with 2.5 and 2.1 seconds in the control and anxiety groups, respectively; P = .02). In contrast, latency to nonspecific stimuli (clap and sigh) was significantly shorter in the depersonalization and anxiety groups (1.6 seconds) than in controls (2.3 seconds) (P = .03). Conclusions In depersonalization disorder, autonomic response to unpleasant stimuli is reduced. The fact that patients with depersonalization disorder respond earlier to a startling noise suggests that they are in a heightened state of alertness and that the reduced response to unpleasant stimuli is caused by a selective inhibitory mechanism on emotional processing.
Resumo:
Patients with depersonalization disorder have shown attenuated responses to emotional unpleasant stimuli, hence supporting the view that depersonalization is characterised by a selective inhibition on the processing of unpleasant emotions. It was the purpose of this study to establish if autonomic responses to facial emotional expressions also show the same blunting effect. The skin conductance responses (SCRs) of 16 patients with chronic DSM-IV depersonalization disorder, 15 normal controls and 15 clinical controls with DSM-IV anxiety disorders were recorded in response to facial expressions of happiness and disgust. Patients with anxiety disorders were found to have greater autonomic responses than patients with depersonalization, in spite of the fact that both groups had similarly high levels of subjective anxiety as measured by anxiety scales. SCR to happy faces did not vary across groups. The findings of this study provide further support to the idea that patients with depersonalization have a selective impairment in the processing of threatening or unpleasant emotional stimuli.
Resumo:
Background - Amygdala-orbitofrontal cortical (OFC) functional connectivity (FC) to emotional stimuli and relationships with white matter remain little examined in bipolar disorder individuals (BD). Methods - Thirty-one BD (type I; n = 17 remitted; n = 14 depressed) and 24 age- and gender-ratio-matched healthy individuals (HC) viewed neutral, mild, and intense happy or sad emotional faces in two experiments. The FC was computed as linear and nonlinear dependence measures between amygdala and OFC time series. Effects of group, laterality, and emotion intensity upon amygdala-OFC FC and amygdala-OFC FC white matter fractional anisotropy (FA) relationships were examined. Results - The BD versus HC showed significantly greater right amygdala-OFC FC (p = .001) in the sad experiment and significantly reduced bilateral amygdala-OFC FC (p = .007) in the happy experiment. Depressed but not remitted female BD versus female HC showed significantly greater left amygdala-OFC FC (p = .001) to all faces in the sad experiment and reduced bilateral amygdala-OFC FC to intense happy faces (p = .01). There was a significant nonlinear relationship (p = .001) between left amygdala-OFC FC to sad faces and FA in HC. In BD, antidepressants were associated with significantly reduced left amygdala-OFC FC to mild sad faces (p = .001). Conclusions - In BD, abnormally elevated right amygdala-OFC FC to sad stimuli might represent a trait vulnerability for depression, whereas abnormally elevated left amygdala-OFC FC to sad stimuli and abnormally reduced amygdala-OFC FC to intense happy stimuli might represent a depression state marker. Abnormal FC measures might normalize with antidepressant medications in BD. Nonlinear amygdala-OFC FC–FA relationships in BD and HC require further study.
Resumo:
Background - Difficulties in emotion processing and poor social function are common to bipolar disorder (BD) and major depressive disorder (MDD) depression, resulting in many BD depressed individuals being misdiagnosed with MDD. The amygdala is a key region implicated in processing emotionally salient stimuli, including emotional facial expressions. It is unclear, however, whether abnormal amygdala activity during positive and negative emotion processing represents a persistent marker of BD regardless of illness phase or a state marker of depression common or specific to BD and MDD depression. Methods - Sixty adults were recruited: 15 depressed with BD type 1 (BDd), 15 depressed with recurrent MDD, 15 with BD in remission (BDr), diagnosed with DSM-IV and Structured Clinical Interview for DSM-IV Research Version criteria; and 15 healthy control subjects (HC). Groups were age- and gender ratio-matched; patient groups were matched for age of illness onset and illness duration; depressed groups were matched for depression severity. The BDd were taking more psychotropic medication than other patient groups. All individuals participated in three separate 3T neuroimaging event-related experiments, where they viewed mild and intense emotional and neutral faces of fear, happiness, or sadness from a standardized series. Results - The BDd—relative to HC, BDr, and MDD—showed elevated left amygdala activity to mild and neutral facial expressions in the sad (p < .009) but not other emotion experiments that was not associated with medication. There were no other significant between-group differences in amygdala activity. Conclusions - Abnormally elevated left amygdala activity to mild sad and neutral faces might be a depression-specific marker in BD but not MDD, suggesting different pathophysiologic processes for BD versus MDD depression.
Resumo:
Objectives - The absence of pathophysiologically relevant diagnostic markers of bipolar disorder (BD) leads to its frequent misdiagnosis as unipolar depression (UD). We aimed to determine whether whole brain white matter connectivity differentiated BD from UD depression. Methods - We employed a three-way analysis of covariance, covarying for age, to examine whole brain fractional anisotropy (FA), and corresponding longitudinal and radial diffusivity, in currently depressed adults: 15 with BD-type I (mean age 36.3 years, SD 12.0 years), 16 with recurrent UD (mean age 32.3 years, SD 10.0 years), and 24 healthy control adults (HC) (mean age 29.5 years, SD 9.43 years). Depressed groups did not differ in depression severity, age of illness onset, and illness duration. Results - There was a main effect of group in left superior and inferior longitudinal fasciculi (SLF and ILF) (all F = 9.8; p = .05, corrected). Whole brain post hoc analyses (all t = 4.2; p = .05, corrected) revealed decreased FA in left SLF in BD, versus UD adults in inferior temporal cortex and, versus HC, in primary sensory cortex (associated with increased radial and decreased longitudinal diffusivity, respectively); and decreased FA in left ILF in UD adults versus HC. A main effect of group in right uncinate fasciculus (in orbitofrontal cortex) just failed to meet significance in all participants but was present in women. Post hoc analyses revealed decreased right uncinate fasciculus FA in all and in women, BD versus HC. Conclusions - White matter FA in left occipitotemporal and primary sensory regions supporting visuospatial and sensory processing differentiates BD from UD depression. Abnormally reduced FA in right fronto-temporal regions supporting mood regulation, might underlie predisposition to depression in BD. These measures might help differentiate pathophysiologic processes of BD versus UD depression.
Resumo:
Emotional liability and mood dysregulation characterize bipolar disorder (BD), yet no study has examined effective connectivity between parahippocampal gyrus and prefrontal cortical regions in ventromedial and dorsal/lateral neural systems subserving mood regulation in BD. Participants comprised 46 individuals (age range: 18-56 years): 21 with a DSM-IV diagnosis of BD, type I currently remitted; and 25 age- and gender-matched healthy controls (HC). Participants performed an event-related functional magnetic resonance imaging paradigm, viewing mild and intense happy and neutral faces. We employed dynamic causal modeling (DCM) to identify significant alterations in effective connectivity between BD and HC. Bayes model selection was used to determine the best model. The right parahippocampal gyrus (PHG) and right subgenual cingulate gyrus (sgCG) were included as representative regions of the ventromedial neural system. The right dorsolateral prefrontal cortex (DLPFC) region was included as representative of the dorsal/lateral neural system. Right PHG-sgCG effective connectivity was significantly greater in BD than HC, reflecting more rapid, forward PHG-sgCG signaling in BD than HC. There was no between-group difference in sgCG-DLPFC effective connectivity. In BD, abnormally increased right PHG-sgCG effective connectivity and reduced right PHG activity to emotional stimuli suggest a dysfunctional ventromedial neural system implicated in early stimulus appraisal, encoding and automatic regulation of emotion that may represent a pathophysiological functional neural mechanism for mood dysregulation in BD.
Resumo:
Neuroimaging studies in bipolar disorder report gray matter volume (GMV) abnormalities in neural regions implicated in emotion regulation. This includes a reduction in ventral/orbital medial prefrontal cortex (OMPFC) GMV and, inconsistently, increases in amygdala GMV. We aimed to examine OMPFC and amygdala GMV in bipolar disorder type 1 patients (BPI) versus healthy control participants (HC), and the potential confounding effects of gender, clinical and illness history variables and psychotropic medication upon any group differences that were demonstrated in OMPFC and amygdala GMV. Images were acquired from 27 BPI (17 euthymic, 10 depressed) and 28 age- and gender-matched HC in a 3T Siemens scanner. Data were analyzed with SPM5 using voxel-based morphometry (VBM) to assess main effects of diagnostic group and gender upon whole brain (WB) GMV. Post-hoc analyses were subsequently performed using SPSS to examine the extent to which clinical and illness history variables and psychotropic medication contributed to GMV abnormalities in BPI in a priori and non-a priori regions has demonstrated by the above VBM analyses. BPI showed reduced GMV in bilateral posteromedial rectal gyrus (PMRG), but no abnormalities in amygdala GMV. BPI also showed reduced GMV in two non-a priori regions: left parahippocampal gyrus and left putamen. For left PMRG GMV, there was a significant group by gender by trait anxiety interaction. GMV was significantly reduced in male low-trait anxiety BPI versus male low-trait anxiety HC, and in high- versus low-trait anxiety male BPI. Our results show that in BPI there were significant effects of gender and trait-anxiety, with male BPI and those high in trait-anxiety showing reduced left PMRG GMV. PMRG is part of medial prefrontal network implicated in visceromotor and emotion regulation.
Resumo:
Objectives - Impaired attentional control and behavioral control are implicated in adult suicidal behavior. Little is known about the functional integrity of neural circuitry supporting these processes in suicidal behavior in adolescence. Method - Functional magnetic resonance imaging was used in 15 adolescent suicide attempters with a history of major depressive disorder (ATTs), 15 adolescents with a history of depressive disorder but no suicide attempt (NATs), and 14 healthy controls (HCs) during the performance of a well-validated go-no-go response inhibition and motor control task that measures attentional and behavioral control and has been shown to activate prefrontal, anterior cingulate, and parietal cortical circuitries. Questionnaires assessed symptoms and standardized interviews characterized suicide attempts. Results - A 3 group by 2 condition (go-no-go response inhibition versus go motor control blocks) block-design whole-brain analysis (p < .05, corrected) showed that NATs showed greater activity than ATTs in the right anterior cingulate gyrus (p = .008), and that NATs, but not ATTs, showed significantly greater activity than HCs in the left insula (p = .004) to go-no-go response inhibition blocks. Conclusions - Although ATTs did not show differential patterns of neural activity from HCs during the go-no-go response inhibition blocks, ATTs and NATs showed differential activation of the right anterior cingulate gyrus during response inhibition. These findings indicate that suicide attempts during adolescence are not associated with abnormal activity in response inhibition neural circuitry. The differential patterns of activity in response inhibition neural circuitry in ATTs and NATs, however, suggest different neural mechanisms for suicide attempt versus major depressive disorder in general in adolescence that should be a focus of further study.
Resumo:
Context - Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulation in BD. Objective - To use tract-based spatial statistics (TBSS) to examine WM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Design - Cross-sectional, case-control, whole-brain DTI using TBSS. Setting - University research institute. Participants - Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type I (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Main Outcome Measures - Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Results - Subjects with BD vs controls had significantly greater FA (t > 3.0, P = .05 corrected) in the left uncinate fasciculus (reduced radial diffusivity distally and increased longitudinal diffusivity centrally), left optic radiation (increased longitudinal diffusivity), and right anterothalamic radiation (no significant diffusivity change). Subjects with BD vs controls had significantly reduced FA (t > 3.0, P = .05 corrected) in the right uncinate fasciculus (greater radial diffusivity). Among subjects with BD, significant negative correlations (P < .01) were found between age and FA in bilateral uncinate fasciculi and in the right anterothalamic radiation, as well as between medication load and FA in the left optic radiation. Decreased FA (P < .01) was observed in the left optic radiation and in the right anterothalamic radiation among subjects with BD taking vs those not taking mood stabilizers, as well as in the left optic radiation among depressed vs remitted subjects with BD. Subjects having BD with vs without lifetime alcohol or other drug abuse had significantly decreased FA in the left uncinate fasciculus. Conclusions - To our knowledge, this is the first study to use TBSS to examine WM in subjects with BD. Subjects with BD vs controls showed greater WM FA in the left OMPFC that diminished with age and with alcohol or other drug abuse, as well as reduced WM FA in the right OMPFC. Mood stabilizers and depressed episode reduced WM FA in left-sided sensory visual processing regions among subjects with BD. Abnormal right vs left asymmetry in FA in OMPFC WM among subjects with BD, likely reflecting increased proportions of left-sided longitudinally aligned and right-sided obliquely aligned myelinated fibers, may represent a biologic mechanism for mood dysregulation in BD.
Resumo:
To examine abnormal patterns of frontal cortical-subcortical activity in response to emotional stimuli in euthymic individuals with bipolar disorder type I in order to identify trait-like, pathophysiologic mechanisms of the disorder. We examined potential confounding effects of total psychotropic medication load and illness variables upon neural abnormalities.
Resumo:
Objectives: Recently, pattern recognition approaches have been used to classify patterns of brain activity elicited by sensory or cognitive processes. In the clinical context, these approaches have been mainly applied to classify groups of individuals based on structural magnetic resonance imaging (MRI) data. Only a few studies have applied similar methods to functional MRI (fMRI) data. Methods: We used a novel analytic framework to examine the extent to which unipolar and bipolar depressed individuals differed on discrimination between patterns of neural activity for happy and neutral faces. We used data from 18 currently depressed individuals with bipolar I disorder (BD) and 18 currently depressed individuals with recurrent unipolar depression (UD), matched on depression severity, age, and illness duration, and 18 age- and gender ratio-matched healthy comparison subjects (HC). fMRI data were analyzed using a general linear model and Gaussian process classifiers. Results: The accuracy for discriminating between patterns of neural activity for happy versus neutral faces overall was lower in both patient groups relative to HC. The predictive probabilities for intense and mild happy faces were higher in HC than in BD, and for mild happy faces were higher in HC than UD (all p < 0.001). Interestingly, the predictive probability for intense happy faces was significantly higher in UD than BD (p = 0.03). Conclusions: These results indicate that patterns of whole-brain neural activity to intense happy faces were significantly less distinct from those for neutral faces in BD than in either HC or UD. These findings indicate that pattern recognition approaches can be used to identify abnormal brain activity patterns in patient populations and have promising clinical utility as techniques that can help to discriminate between patients with different psychiatric illnesses.
Resumo:
Bipolar disorder (BP) is among the top ten most disabling illnesses worldwide. This review includes findings from recent studies employing functional neuroimaging to examine functional abnormalities in neural systems underlying core domains of the psychopathology in BP: emotion processing, emotion regulation and executive control, and common comorbid features of BP, that are relevant to the wide spectrum of BP rather than focused on the more traditional BPI subtype, and that may facilitate future identification of diagnostically-relevant biomarkers of the disorder. In addition, an emerging number of studies are reviewed that demonstrate the use of neuroimaging to elucidate biomarkers whose identification may help to (1) identify at-risk individuals who will subsequently develop the illness to facilitate early intervention, (2) identify targets for treatment and markers of treatment response. The use of newer neuroimaging techniques and potential confounds of psychotropic medication upon neuroimaging findings in BP are also examined. These approaches will help to improve diagnosis and the mental well-being of all individuals with BP.
Resumo:
Objective - To identify neurocognitive measures that could be used as objective markers of bipolar disorder. Methods - We examined executive function, sustained attention and short-term memory as neurocognitive domains in 18 participants with bipolar disorder in euthymic state (Beuth), 14 in depressed state (Bdep), 20 with unipolar depression (Udep) and 28 healthy control participants (HC). We conducted four-group comparisons followed by relevant post hoc analyses. Results - Udep and Bdep, but not Beuth showed impaired executive function (p = 0.045 and p = 0.046, respectively). Both Bdep and Beuth, but not Udep, showed impaired sustained attention (p = 0.001 and p = 0.045, respectively). The four groups did not differ significantly on short-term memory. Impaired sustained attention and executive dysfunction were not associated with depression severity, duration of illness and age of illness onset. Only a small number of abnormal neurocognitive measures were associated with medication in Bdep and Beuth. Conclusion - Impaired sustained attention appears specific to bipolar disorder and present in both Beuth and Bdep; it may represent an objective marker of bipolar disorder. Executive dysfunction by contrast, appears to be present in Udep and Bdep and likely represents a marker of depression.