45 resultados para Markov chains. Convergence. Evolutionary Strategy. Large Deviations
em Aston University Research Archive
Resumo:
We investigate a class of simple models for Langevin dynamics of turbulent flows, including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations. Starting from a path integral representation of the transition probability, we compute the most probable fluctuation paths from one attractor to any state within its basin of attraction. We prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for a corresponding dual dynamics, which are also within the framework of quasi-geostrophic Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific example for which the stationary measure displays either a second order (continuous) or a first order (discontinuous) phase transition and a tricritical point. In situations where a first order phase transition is observed, the dynamics are bistable. Then, the transition paths between two coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are related to the relaxation paths of the corresponding dual dynamics. For this example, we show how one can analytically determine the instantons and compute the transition probabilities for rare transitions between two attractors.
Resumo:
A recently developed spectral method for identifying metastable states in Markov chains is used to analyse the conformational dynamics of a four residue peptide Valine-Proline-Alanine-Leucine. We compare our results to empirically defined conformational states and show that the found metastable states correctly reproduce the conformational dynamics of the system.
Resumo:
This study examines the issues of `integration' of human resource management (HRM) into the corporate strategy, `devolvement' of HRM to line managers and the perceived influence of national culture on HRM in a cross-national comparative context. In order to achieve this, the cognition of personnel specialists from a matched sample of 48 Indian and British firms in the manufacturing sector using the `Visual Cards Sorting' and `CMAP2' methodologies are analyzed. The findings show that even where there is an apparent convergence of strategy — e.g., the desire of both Indian and British personnel managers to increase integration between HRM and business strategy, and to increase the level of devolvement to line managers, the two sets of specialists clearly follow a different logic of action, which is subject to a different set of cross-cultural influences. The implications of pursuing apparently similar HRM solutions in different cross-national contexts are considered. The analysis shows that HRM strategies, when considered in a cross-national context, vary a lot. Different logic leads to the adoption of similar HR strategies, and similar strategies in turn are perceived as producing different outcomes. This variance centres around the existence and perceived influence of several contextual variables such as industrial relations systems, operation of labour markets, and changes in business systems. Specific cross-cultural influences, along with different aspects of competitive business environment associated with the generic HR strategies of integration and devolvement in the two countries are highlighted. This research contributes to the fields of cross-cultural management research, international HRM and managerial and organizational cognition. It also has important messages for policy makers.
Resumo:
The software underpinning today’s IT systems needs to adapt dynamically and predictably to rapid changes in system workload, environment and objectives. We describe a software framework that achieves such adaptiveness for IT systems whose components can be modelled as Markov chains. The framework comprises (i) an autonomic architecture that uses Markov-chain quantitative analysis to dynamically adjust the parameters of an IT system in line with its state, environment and objectives; and (ii) a method for developing instances of this architecture for real-world systems. Two case studies are presented that use the framework successfully for the dynamic power management of disk drives, and for the adaptive management of cluster availability within data centres, respectively.
Resumo:
We present the prototype tool CADS* for the computer-aided development of an important class of self-* systems, namely systems whose components can be modelled as Markov chains. Given a Markov chain representation of the IT components to be included into a self-* system, CADS* automates or aids (a) the development of the artifacts necessary to build the self-* system; and (b) their integration into a fully-operational self-* solution. This is achieved through a combination of formal software development techniques including model transformation, model-driven code generation and dynamic software reconfiguration.
Resumo:
In this paper a Markov chain based analytical model is proposed to evaluate the slotted CSMA/CA algorithm specified in the MAC layer of IEEE 802.15.4 standard. The analytical model consists of two two-dimensional Markov chains, used to model the state transition of an 802.15.4 device, during the periods of a transmission and between two consecutive frame transmissions, respectively. By introducing the two Markov chains a small number of Markov states are required and the scalability of the analytical model is improved. The analytical model is used to investigate the impact of the CSMA/CA parameters, the number of contending devices, and the data frame size on the network performance in terms of throughput and energy efficiency. It is shown by simulations that the proposed analytical model can accurately predict the performance of slotted CSMA/CA algorithm for uplink, downlink and bi-direction traffic, with both acknowledgement and non-acknowledgement modes.
Resumo:
We extend a meshless method of fundamental solutions recently proposed by the authors for the one-dimensional two-phase inverse linear Stefan problem, to the nonlinear case. In this latter situation the free surface is also considered unknown which is more realistic from the practical point of view. Building on the earlier work, the solution is approximated in each phase by a linear combination of fundamental solutions to the heat equation. The implementation and analysis are more complicated in the present situation since one needs to deal with a nonlinear minimization problem to identify the free surface. Furthermore, the inverse problem is ill-posed since small errors in the input measured data can cause large deviations in the desired solution. Therefore, regularization needs to be incorporated in the objective function which is minimized in order to obtain a stable solution. Numerical results are presented and discussed. © 2014 IMACS.
Resumo:
Markovian models are widely used to analyse quality-of-service properties of both system designs and deployed systems. Thanks to the emergence of probabilistic model checkers, this analysis can be performed with high accuracy. However, its usefulness is heavily dependent on how well the model captures the actual behaviour of the analysed system. Our work addresses this problem for a class of Markovian models termed discrete-time Markov chains (DTMCs). We propose a new Bayesian technique for learning the state transition probabilities of DTMCs based on observations of the modelled system. Unlike existing approaches, our technique weighs observations based on their age, to account for the fact that older observations are less relevant than more recent ones. A case study from the area of bioinformatics workflows demonstrates the effectiveness of the technique in scenarios where the model parameters change over time.
Resumo:
We investigate the theoretical and numerical computation of rare transitions in simple geophysical turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier–Stokes equations in regimes where bistability between two coexisting large-scale attractors exist. By means of large deviations and instanton theory with the use of an Onsager–Machlup path integral formalism for the transition probability, we show how one can directly compute the most probable transition path between two coexisting attractors analytically in an equilibrium (Langevin) framework and numerically otherWe adapt a class of numerical optimization algorithms known as minimum action methods to simple geophysical turbulent models. We show that by numerically minimizing an appropriate action functional in a large deviation limit, one can predict the most likely transition path for a rare transition between two states. By considering examples where theoretical predictions can be made, we show that the minimum action method successfully predicts the most likely transition path. Finally, we discuss the application and extension of such numerical optimization schemes to the computation of rare transitions observed in direct numerical simulations and experiments and to other, more complex, turbulent systems.
Resumo:
Different procurement decisions taken by relief organizations can result in considerably different implications in regards to transport, storage, and distribution of humanitarian aid and ultimately can influence the performance of the humanitarian supply chain and the delivery of the humanitarian aid. In this article, we look into what resources are needed and how these resources evolve in the delivery of humanitarian aid. Drawing on the resource-based view of the firm, we develop a framework to categorize the impact of local resources on the configuration of humanitarian supply chains. In contrast to other papers, the importance of localizing the configuration of the humanitarian supply chain is not only conceptually recognized, but empirical investigations are also provided. In terms of methodology, this article is based on the analysis of secondary data from two housing reconstruction projects. Findings indicate that the use of local resources in humanitarian aid has positive effects on programs' overall supply chain performance and these effects are not only related to the macroeconomic perspective, but benefits expand to improvements related to the use of knowledge. At the same time, it was found that local sourcing often comes with a number of problems. For example, in one of the cases, significant problems existed, which were related to the scarcity of local supplies. Both housing reconstruction projects have indicated the continuous need for changes throughout the programs as a dynamic supply chain configuration is important for the long-term sustainability of reconstruction aid. © 2014 Decision Sciences Institute.
Resumo:
In this paper we develop set of novel Markov Chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. The novel diffusion bridge proposal derived from the variational approximation allows the use of a flexible blocking strategy that further improves mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample applications the algorithm is accurate except in the presence of large observation errors and low to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient. © 2011 Springer-Verlag.
Resumo:
This research is concerned with the relationship between business strategy and the environment within traditional sectors. It has sought to learn more about the strategic environmental attitudes of SMEs compared with large companies operating under the same market conditions. The sector studied is the ceramics industry (including tableware & ornamental-ware, sanitary ware & tiles, bricks, industrial & advanced ceramics and refractories) in the UK and France. Unlike the automotive, oil, chemical, steel or metal processing sectors, this industry is one of the few industrial sectors which has rarely been considered. The information on this sector was gathered by interviewing people responsible for environmental issues. The actual programme of valid interviews represents approximately a quarter of the UK and French ceramics industry which is large enough to enable a quantitative analysis and significant and non-biased conclusions. As a whole, all companies surveyed agreed that the ceramics activity impacts on the environment, and that they are increasingly affected both by environmental legislation, and by various non-legislative pressures. Approaches to the environmental agenda differ significantly among large and small companies. Smaller companies feel particularly pressed both by the financial costs and management time required to meet complex and changing legislation. The results of this survey also suggest that the ceramics industry sees environmental issues in terms of increased costs rather than new business opportunities. This is due principally to fears of import substitution from countries with lower environmental standards. Finally, replies indicate that generally there is a low level of awareness of the current legislative framework, suggesting a need to shift from a regulatory approach to a more self-regulated approach which encourages companies to be more proactive
Resumo:
Purpose - To develop a systems strategy for supply chain management in aerospace maintenance, repair and overhaul (MRO). Design/methodology/approach - A standard systems development methodology has been followed to produce a process model (i.e. the AMSCR model); an information model (i.e. business rules) and a computerised information management capability (i.e. automated optimisation). Findings - The proof of concept for this web-based MRO supply chain system has been established through collaboration with a sample of the different types of supply chain members. The proven benefits comprise new potential to minimise the stock holding costs of the whole supply chain whilst also minimising non-flying time of the aircraft that the supply chain supports. Research limitations/implications - The scale of change needed to successfully model and automate the supply chain is vast. This research is a limited-scale experiment intended to show the power of process analysis and automation, coupled with strategic use of management science techniques, to derive tangible business benefit. Practical implications - This type of system is now vital in an industry that has continuously decreasing profit margins; which in turn means pressure to reduce servicing times and increase the mean time between them. Originality/value - Original work has been conducted at several levels: process, information and automation. The proof-of-concept system has been applied to an aircraft MRO supply chain. This is an area of research that has been neglected, and as a result is not well served by current systems solutions. © Emerald Group Publishing Limited.
Resumo:
This paper contrasts the effects of trade, inward FDI and technological development upon the demand for skilled and unskilled workers in the UK. By focussing on industry level data panel data on smaller firms, the paper also contrasts these effects with those generated by large scale domestic investment. The analysis is placed within the broader context of shifts in British industrial policy, which has seen significant shifts from sectoral to horizontal measures and towards stressing the importance of SMEs, clusters and new technology, all delivered at the regional scale. This, however, is contrasted with continued elements of British and EU regional policy which have emphasised the attraction of inward investment in order to alleviate regional unemployment. The results suggest that such policies are not naturally compatible; that while both trade and FDI benefit skilled workers, they have adverse effects on the demand for unskilled labour in the UK. At the very least this suggests the need for a range of policies to tackle various targets (including in this case unemployment and social inclusion) and the need to integrate these into a coherent industrial strategy at various levels of governance, whether regional and/or national. This has important implications for the form of any 'new' industrial policy.
Resumo:
This paper reports results from an ongoing project examining what managers think about knowledge management in the context of their organisation. This was done in a facilitated computerassisted group workshop environment. Here we compare the outcomes of workshops held for two relatively large UK organisations, one public sector and the other private. Our conclusions are that there are relatively few differences between the perceptions of these two groups of managers, and that these differences stem more from the stage of the knowledge management life cycle that the two organisations have reached, rather than from the difference in context between public and private sector. © iKMS & World Scientific Publishing Co.