3 resultados para Markov Switching
em Aston University Research Archive
Resumo:
An expanding literature exists to suggest that the trading mechanism can influence the volatility of security returns. This study adds to this literature by examining the impact that the introduction of SETS, on the London Stock Exchange, had on the volatility of security returns. Using a Markov switching regime change model security volatility is categorized as being in a regime of either high or low volatility. It is shown that prior to the introduction of SETS securities tended to be in a low volatility regime. At the time SETS was introduced securities moved to a high volatility regime. This suggests that volatility increased when SETS was introduced.
Resumo:
Using a Markov switching unobserved component model we decompose the term premium of the North American CDX index into a permanent and a stationary component. We establish that the inversion of the CDX term premium is induced by sudden changes in the unobserved stationary component, which represents the evolution of the fundamentals underpinning the probability of default in the economy. We find evidence that the monetary policy response from the Fed during the crisis period was effective in reducing the volatility of the term premium. We also show that equity returns make a substantial contribution to the term premium over the entire sample period.
Resumo:
The deficiencies of stationary models applied to financial time series are well documented. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We use a dynamic switching (modelled by a hidden Markov model) combined with a linear dynamical system in a hybrid switching state space model (SSSM) and discuss the practical details of training such models with a variational EM algorithm due to [Ghahramani and Hilton,1998]. The performance of the SSSM is evaluated on several financial data sets and it is shown to improve on a number of existing benchmark methods.