2 resultados para Marginal individual utility

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Past studies resulted in conflicting definitions of consumer motivation. On the one hand, motivations are seen as the consumer’s characteristics that shape her general behavior (motivational trait). On the other hand, they are seen as contextual variables representing the reason why the individual is behaving specific to today’s context (motivational state). The objective of this research is to stress the difference between these two concepts and to understand the impact of each on consumer behavior. We applied our empirical study to shopping motivations; our results show a strong interaction between motivational trait and motivational state. Problem and Hypothesis On the one hand, Westbrook and Black (1985) consider shopping motivations as individual permanent characteristics. This concept is shared by other researchers (Rohm and Swaminathan 2004), which show that some shoppers are functional (they shop for convenience, information seeking, and time saving) while some others are hedonic (they shop for social interaction, bargain hunting and browsing). On the other hand, Kaltcheva and Weitz (2006) define motivations as a contextual orientation changing over time, depending on the situation, and show that contextual shopping motivations have a strong impact on shopping behavior. From our knowledge, no research specifically examined the respective impact of both these shopping motivation types. To deal with this issue, we used the notions of “traits” and “states” that have been largely used in marketing research to designate respectively a permanent characteristic of the individual and a temporary orientation of the consumer (Mowen 2000). The reversal theory (Apter 2001) suggests that two opposite states exist: the telic and the paratelic states. In the telic state, individuals set goals for themselves, must be disciplined to reach these goals, and do not behave in accordance with their personal trait. In the paratelic state, individuals are seeking arousal and enjoyment, do not set rules, and one could postulate that they act in accordance with their natural tendencies. Based on these considerations, we hypothesize the following process: in situations involving paratelic states, hedonic as well as functional individuals should behave according to their natural traits, whereas in situations involving telic states, hedonic people should inhibit their natural propensity to enjoy shopping and behave similarly to functional people. Hence, we postulate the following: Hypothesis: Compared to shoppers with functional motivational trait, shoppers with hedonic motivational trait will a) significantly display more hedonic shopping behavior intentions in a condition of paratelic motivational state, and b) not display more hedonic shopping behavior intentions in a condition a telic motivational state Empirical Research First, 108 participants were asked to fill a multi-items scale about their shopping habits, which actually measured their shopping motivational traits. This questionnaire allowed us to highlight four different dimensions in shopping motivational traits: social interaction, novelty/utility seeking, bargain hunting, and browsing. According to their scores on different items, participants were classified as functional or as hedonic on each of these four dimensions (a single individual may be hedonic on some dimensions and functional on others). Then, participants were then induced to adopt either a telic or a paratelic shopping motivational state while reading an appropriate scenario. Finally, participants were asked for their shopping behavior intentions in response to the shopping context. Four items were developed, corresponding to the four shopping motivational trait dimensions we found with our factor analysis. Results As we found four dimensions in shopping motivational trait, we set up four quasi-experimental designs to capture the entire phenomenon: for each dimension, a 2 (motivational trait) x 2 (motivational state) design was built, where the dependant variable was the shopping behavior element corresponding to the studied dimension. Four 2 x 2 Anovas were performed to assess the interaction between motivational trait and motivational state. Concerning the three dimensions - browsing, novelty/utility seeking, and bargain hunting- , in the paratelic state scenario participants with hedonic motivational trait displayed significantly more hedonic shopping behavior intentions than participants with a functional motivational trait (resp. F = 9.701, p = .003; F = 4.979, p = .03; F = 5.757, p = .02); and in the telic state scenario, there was no significant difference in behavior intentions between participants with hedonic or functional motivation trait. Each time, the interaction effect between motivational state and motivational trait was significant (resp. F = 4.859, p = .03; F = 3.314, p = .07; F = 2.98, p = .08). Concerning the fourth dimension, social interaction, shopping behavior intentions of participants with hedonic and with functional motivational traits were significantly different in the paratelic state scenario (F = 29.898, p <.000) as well as in the telic state scenario (F = 9.559, p = .003). However, the interaction effect showed that this behavioral difference was significantly stronger in the paratelic scenario. All these results support our research hypothesis. Discussion and Implications Our study provides consistent support for our hypotheses saying that there is an interaction effect between shopping motivational states and shopping motivational traits. The generalization of the results is strengthened by the study of four different shopping traits: social interaction, novelty/utility seeking, bargain hunting and browsing. As we proposed, when shopping in a goal-oriented state (telic state), behaviors of hedonic and functional shoppers do not differ significantly. Conversely, when shopping for a recreational reason (paratelic state), hedonic and functional shoppers behave significantly different. These results could explain why some previous studies concluded that shopping motivational traits had no impact on shopping behavior: they did not take into consideration the interaction between motivational trait and motivational state. Moreover, our study shows that marketing surveys performed by store managers to draw the personal profile of their customers must be crossed with contextual motivations in order to accurately forecast shopper behavior. Future Developments Our results can be explained by the self-control process, which pushes hedonic-trait shoppers to behave in a rather functional way in utilitarian situations. However, to be certain that this is the very process that occurs, we plan to add self-control perception scales to our existing measures. This is obviously the next step of this research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.