10 resultados para Maintenance operations
em Aston University Research Archive
Resumo:
The performance of most operations systems is significantly affected by the interaction of human decision-makers. A methodology, based on the use of visual interactive simulation (VIS) and artificial intelligence (AI), is described that aims to identify and improve human decision-making in operations systems. The methodology, known as 'knowledge-based improvement' (KBI), elicits knowledge from a decision-maker via a VIS and then uses AI methods to represent decision-making. By linking the VIS and AI representation, it is possible to predict the performance of the operations system under different decision-making strategies and to search for improved strategies. The KBI methodology is applied to the decision-making surrounding unplanned maintenance operations at a Ford Motor Company engine assembly plant.
Resumo:
Modelling human interaction and decision-making within a simulation presents a particular challenge. This paper describes a methodology that is being developed known as 'knowledge based improvement'. The purpose of this methodology is to elicit decision-making strategies via a simulation model and to represent them using artificial intelligence techniques. Further to this, having identified an individual's decision-making strategy, the methodology aims to look for improvements in decision-making. The methodology is being tested on unplanned maintenance operations at a Ford engine assembly plant
Resumo:
The work reported in this paper is part of a project simulating maintenance operations in an automotive engine production facility. The decisions made by the people in charge of these operations form a crucial element of this simulation. Eliciting this knowledge is problematic. One approach is to use the simulation model as part of the knowledge elicitation process. This paper reports on the experience so far with using a simulation model to support knowledge management in this way. Issues are discussed regarding the data available, the use of the model, and the elicitation process itself. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The work reported in this paper is part of a project simulating maintenance operations in an automotive engine production facility. The decisions made by the people in charge of these operations form a crucial element of this simulation. Eliciting this knowledge is problematic. One approach is to use the simulation model as part of the knowledge elicitation process. This paper reports on the experience so far with using a simulation model to support knowledge management in this way. Issues are discussed regarding the data available, the use of the model, and the elicitation process itself.
Resumo:
The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is unproductive. A risk-based decision support system (DSS) that reduces the amount of time spent on inspection has been presented. The risk-based DSS uses the analytic hierarchy process (AHP), a multiple attribute decision-making technique, to identify the factors that influence failure on specific segments and analyzes their effects by determining probability of occurrence of these risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost and the cumulative effect of failure is determined through probability analysis. The model optimizes the cost of pipeline operations by reducing subjectivity in selecting a specific inspection method, identifying and prioritizing the right pipeline segment for inspection and maintenance, deriving budget allocation, providing guidance to deploy the right mix labor for inspection and maintenance, planning emergency preparation, and deriving logical insurance plan. The proposed methodology also helps derive inspection and maintenance policy for the entire pipeline system, suggest design, operational philosophy, and construction methodology for new pipelines.
Resumo:
Offshore oil and gas pipelines are vulnerable to environment as any leak and burst in pipelines cause oil/gas spill resulting in huge negative Impacts on marine lives. Breakdown maintenance of these pipelines is also cost-intensive and time-consuming resulting in huge tangible and intangible loss to the pipeline operators. Pipelines health monitoring and integrity analysis have been researched a lot for successful pipeline operations and risk-based maintenance model is one of the outcomes of those researches. This study develops a risk-based maintenance model using a combined multiple-criteria decision-making and weight method for offshore oil and gas pipelines in Thailand with the active participation of experienced executives. The model's effectiveness has been demonstrated through real life application on oil and gas pipelines in the Gulf of Thailand. Practical implications. Risk-based inspection and maintenance methodology is particularly important for oil pipelines system, as any failure in the system will not only affect productivity negatively but also has tremendous negative environmental impact. The proposed model helps the pipelines operators to analyze the health of pipelines dynamically, to select specific inspection and maintenance method for specific section in line with its probability and severity of failure.
Resumo:
This paper discusses the possible contributions from modularity and industrial condominiums towards enhancing environmental performance in the automotive industry. The research described in this study is underpinned by a review of journal articles and books on the topics of: modularity of production systems; green operations practices, and the automotive industry and sustainability. The methodology is based on theoretical analysis of the contribution of the modular production system characteristics used in the automotive industry for Green Operations Practices (GOP). The following GOPs were considered: green buildings, eco-design, green supply chains, greener manufacturing, and reverse logistics. The results are theoretical in nature; however, due to the small number of studies that investigate the relationship between modularity and sustainability, this work is relevant to increase knowledge in academic circles and among practitioners in order to understand the possible environmental benefits from modular production systems. For instance, based upon our analysis, we could deduce that the existing modular production systems in the automotive industry may contribute in different ways to the implementation of GOPs. In all types of modularity, product simplification through the use of modules can enhance environmental performance and facilitate further activities such as maintenance and repair contributing to a longer life of cars on the road. Moreover, modules will make automobiles easier to disassembly, so increasing the chances of reuse of valuable components and a better final disposal of scrap. Regarding the potential benefits of each type of modularity, it is expected that modular consortia will have a better integration of environmental practices with suppliers and seize on high efficiency during manufacturing and logistics compared with conventional production systems.
Resumo:
The objective of Total Productive Maintenance (TPM) is to maximise plant and equipment effectiveness, to create a sense of ownership for operators, and promote continuous improvement through small group activities involving production, engineering and maintenance personnel. This paper describes and analyses a case study of TPM implementation at a newspaper printing house in Singapore. However, rather than adopting more conventional implementation methods such as employing consultants or through a project using external training, a unique approach was adopted based on Action Research using a spiral of cycles of planning, acting observing and reflecting. An Action Research team of company personnel was specially formed to undertake the necessary fieldwork. The team subsequently assisted with administering the resulting action plan. The main sources of maintenance and operational data were from interviews with shop floor workers, participative observation and reviews conducted with members of the team. Content analysis using appropriate statistical techniques was used to test the significance of changes in performance between the start and completion of the TPM programme. The paper identifies the characteristics associated with the Action Research method when used to implement TPM and discusses the applicability of the approach in related industries and processes.
Resumo:
Category hierarchy is an abstraction mechanism for efficiently managing large-scale resources. In an open environment, a category hierarchy will inevitably become inappropriate for managing resources that constantly change with unpredictable pattern. An inappropriate category hierarchy will mislead the management of resources. The increasing dynamicity and scale of online resources increase the requirement of automatically maintaining category hierarchy. Previous studies about category hierarchy mainly focus on either the generation of category hierarchy or the classification of resources under a pre-defined category hierarchy. The automatic maintenance of category hierarchy has been neglected. Making abstraction among categories and measuring the similarity between categories are two basic behaviours to generate a category hierarchy. Humans are good at making abstraction but limited in ability to calculate the similarities between large-scale resources. Computing models are good at calculating the similarities between large-scale resources but limited in ability to make abstraction. To take both advantages of human view and computing ability, this paper proposes a two-phase approach to automatically maintaining category hierarchy within two scales by detecting the internal pattern change of categories. The global phase clusters resources to generate a reference category hierarchy and gets similarity between categories to detect inappropriate categories in the initial category hierarchy. The accuracy of the clustering approaches in generating category hierarchy determines the rationality of the global maintenance. The local phase detects topical changes and then adjusts inappropriate categories with three local operations. The global phase can quickly target inappropriate categories top-down and carry out cross-branch adjustment, which can also accelerate the local-phase adjustments. The local phase detects and adjusts the local-range inappropriate categories that are not adjusted in the global phase. By incorporating the two complementary phase adjustments, the approach can significantly improve the topical cohesion and accuracy of category hierarchy. A new measure is proposed for evaluating category hierarchy considering not only the balance of the hierarchical structure but also the accuracy of classification. Experiments show that the proposed approach is feasible and effective to adjust inappropriate category hierarchy. The proposed approach can be used to maintain the category hierarchy for managing various resources in dynamic application environment. It also provides an approach to specialize the current online category hierarchy to organize resources with more specific categories.