9 resultados para Magnetron sputtering
em Aston University Research Archive
Resumo:
Nanostructured Cu/304 stainless steel (SS) multilayers were prepared by magnetron sputtering. 304SS has a face-centered-cubic (fcc) structure in bulk. However, in the Cu/304SS multilayers, the 304SS layers exhibit the fcc structure for layer thickness of =5 nm in epitaxy with the neighboring fcc Cu. For 304SS layer thickness larger than 5 nm, body-centered-cubic (bcc) 304SS grains grow on top of the initial 5 nm fcc SS with the Kurdjumov-Sachs orientation relationship between bcc and fcc SS grains. The maximum hardness of Cu/304SS multilayers is about 5.5 GPa (factor of two enhancement compared to rule-of-mixtures hardness) at a layer thickness of 5 nm. Below 5 nm, hardness decreases with decreasing layer thickness. The peak hardness of fcc/fcc Cu/304SS multilayer is greater than that of Cu/Ni, even though the lattice-parameter mismatch between Cu and Ni is five times greater than that between Cu and 304SS. This result may primarily be attributed to the higher interface barrier stress for single-dislocation transmission across the {111} twinned interfaces in Cu/304SS as compared to the {100} interfaces in Cu/Ni.
Resumo:
Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.
Resumo:
The femtosecond laser modification of refractive index in amorphous Al2O3:Nd thin film prepared by rf magnetron sputtering is investigated. Modifications of the refractive index in a sample with a single Al2O3:Nd layer and in a sample composed of the Al2O3:Nd layer and SiO2 layer on the top were compared. Advantages arising from addition of the SiO2 layer are shown. The film was patterned in order to form an active waveguide. Waveguide loss and mode composition were investigated experimentally and theoretically. Spectrum and kinetics of luminescence in the region of 1.06 μm were measured.
Resumo:
The most perfectly structured metal surface observed in practice is that of a field evaporated field-ion microscope specimen. This surface has been characterised by adopting various optical analogue techniques. Hence a relationship has been determined between the structure of a single plane on the surface of a field-ion emitter and the geometry of a binary zone plate. By relating the known focussing properties of such a zone plate to those obtained from the projected images of such planes in a field-ion micrograph, it is possible to extract new information regarding the local magnification of the image. Further to this, it has been shown that the entire system of planes comprising the field-ion imaging surface may be regarded as a moire pattern formed between over-lapping zone plates. The properties of such moire zone plates are first established in an analysis of the moire pattern formed between zone plates on a flat surface. When these ideas are applied to the field-ion image it becomes possible to deduce further information regarding the precise topography of the emitter. It has also become possible to simulate differently proJected field-ion images by overlapping suitably aberrated zone plates. Low-energy ion bombardment is an essential preliminary to much surface research as a means of producing chemically clean surfaces. Hence it is important to know the nature and distribution of the resultant lattice damage, and the extent to which it may be removed by annealing. The field-ion microscope has been used to investigate such damage because its characterisation lies on the atomic scale. The present study is concerned with the in situ sputtering of tungsten emitters using helium, neon, argon and xenon ions with energies in the range 100eV to 1keV, together with observations of the effect of annealing. The relevance of these results to surface cleaning schedules is discussed.
Resumo:
The design and construction of a sputtering system for the deposition of barium titanate thin films is described. The growth and structure of barium titanate films deposited on a variety of substrates including amorphous carbon fi1ms, potassium bromide single crystals, and polycrystalline gold films has been studied. Films deposited on all substrates at room temperature were amorphous. Polycrystalline titanate films were formed on polycrystalline and amorphous substrates at temperatures above 450°C while films with a pronounced texture could be expitaxially deposited on single crystal potassium bromide above a temperature of only 200°C. Results of dielectric measurements made on the films are reported. Amorphous films were highly insulating (resistivities ~1014 ohm.cm with dielectric constants of between 10 and 20.
Resumo:
Films of amorphous silicon (a-Si) were prepared by r.f. sputtering in a Ne plasma without the addition of hydrogen or a halogen. The d.c. dark electrical conductivity, he optical gap and the photoconductivity of the films were investigated for a range of preparation conditions, the sputtering gas pressure, P, the target-substrate spacing, d, the self-bias voltage, Vsb, on the target and the substrate temperature, Ts. The dependence of the electrical and optical properties on these conditions showed that various combinations of P, d and Vsb, at a constant Ts, giving the same product (Pd/V sb) result in films with similar properties, provided that P, d and Vsb remain vithin a certain range. Variation of Pd/Vsb between about 0.2 and 0.8 rrTorr.cm!V varied the dark conductivity over about 4 orders of magnitude, the optical gap by 0.5 eV and the photoconductivity over 4-5 orders of magnitude. This is attributed to controlling the density-of-states distribution in the mobility gap. The temperature-dependence of photoconductivity and the photoresponse of undoped films are in support of this conclusion. Films prepared at relatively high (Pd/Vsb) values and Ts=300 ºc: exhibited low dark-conductivity and high thermal activation energy, optical gap and photoresponse, characteristic properties of a 'low density-of-states material. P-type doping with group-Ill elements (Al, B and Ga) by sputtering from a composite target or from a predoped target (B-.doped) was investigated. The systematic variation of room-temperature conductivity over many orders of magnitude and a Fermi-level shift of about 0.7 eV towards the valence-band edge suggest that substitutional doping had taken place. The effects of preparation conditions on doping efficiency were also investigated. The post-deposition annealing of undoped and doped films were studied for a temperature range from 250 ºC to 470 ºC. It was shown that annealing enhanced the doping efficiency considerably, although it had little effect on the basic material (a-Si) prepared at the optimum conditions (Pd/Vsb=0.8 mTorr.cm/V and Ts=300 $ºC). Preliminary experiments on devices imply potential applications of the present material, such as p-n and MS junctions.
Resumo:
Under ideal conditions ion plating produces finely grained dense coatings with excellent adhesion. The ion bombardment induced damage initiates a large number of small nuclei. Simultaneous coating and sputtering stimulates high rates of diffusion and forms an interfacial region of graded composition responsible for good adhesion. To obtain such coatings on components far industrial applications, the design and construction Of an ion plater with a 24" (O.6rn) diameter chamber were investigated and modifications of the electron beam gun were proposed. A 12" (O.3m) diameter ion plater was designed and constructed. The equipment was used to develop surfaces for solar energy applications. The conditions to give extended surfaces by sputter etching were studied. Austenitic stainless steel was sputter etched at 20 and 30 mTorr working pressure and at 3, 4 and 5 kV. Uniform etching was achieved by redesigning the specimen holder to give a uniform electrostatic field over the surfaces of the specimens. Surface protrusions were observed after sputter etching. They were caused by the sputter process and were independent of grain boundaries, surface contaminants and inclusions. The sputtering rate of stainless steel was highly dependent on the background pressure which should be kept below 10-5 Torr. Sputter etching improved the performance of stainless steel used as a solar selective surface. A twofold improvement was achieved on sputter etching bright annealed stainless steel. However, there was only slight improvement after sputter etching stainless steel which had been mechanically polished to a mirror finish. Cooling curves Were used to measure the thermal emittance of specimens.The deposition rate of copper was measured at different levels of power input and was found to be a maximum at 9.5 kW. The diameter of the copper feed rod was found to be critical for the maintenance of a uniform evaporation rate.
Resumo:
For all-solution-processed (ASP) devices, transparent conducting oxide (TCO) nanocrystal (NC) inks are anticipated as the next-generation electrodes to replace both those synthesized by sputtering techniques and those consisting of rare metals, but a universal and one-pot method to prepare these inks is still lacking. A universal one-pot strategy is now described; through simply heating a mixture of metal-organic precursors a wide range of TCO NC inks, which can be assembled into high-performance electrodes for use in ASP optoelectronics, were synthesized. This method can be used for various oxide NC inks with yields as high as 10 g. The formed NCs are of high crystallinity, uniform morphology, monodispersity, and high ink stability and feature effective doping. Therefore, the inks can be readily assembled into films with a surface roughness of 1.6 nm. Typically, a sheet resistance of 110 Ω sq-1 can be achieved with a transmittance of 88%, which is the best performance for TCO NC ink-based electrodes described to date. These electrodes can thus drive a polymer light-emitting diode (PLED) with a luminance of 2200 cdm-2 at 100 mA cm-2.