5 resultados para Macro scale distributions

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work investigates the adhesive/cohesive molecular and physical interactions together with nanoscopic features of commonly used orally disintegrating tablet (ODT) excipients microcrystalline cellulose (MCC) and D-mannitol. This helps to elucidate the underlying physico-chemical and mechanical mechanisms responsible for powder densification and optimum product functionality. Atomic force microscopy (AFM) contact mode analysis was performed to measure nano-adhesion forces and surface energies between excipient-drug particles (6-10 different particles per each pair). Moreover, surface topography images (100 nm2-10 μm2) and roughness data were acquired from AFM tapping mode. AFM data were related to ODT macro/microscopic properties obtained from SEM, FTIR, XRD, thermal analysis using DSC and TGA, disintegration testing, Heckel and tabletability profiles. The study results showed a good association between the adhesive molecular and physical forces of paired particles and the resultant densification mechanisms responsible for mechanical strength of tablets. MCC micro roughness was 3 times that of D-mannitol which explains the high hardness of MCC ODTs due to mechanical interlocking. Hydrogen bonding between MCC particles could not be established from both AFM and FTIR solid state investigation. On the contrary, D-mannitol produced fragile ODTs due to fragmentation of surface crystallites during compression attained from its weak crystal structure. Furthermore, AFM analysis has shown the presence of extensive micro fibril structures inhabiting nano pores which further supports the use of MCC as a disintegrant. Overall, excipients (and model drugs) showed mechanistic behaviour on the nano/micro scale that could be related to the functionality of materials on the macro scale. © 2014 Al-khattawi et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a two-dimensional water model investigation and development of a multiscale method for the modelling of large systems, such as virus in water or peptide immersed in the solvent. We have implemented a two-dimensional ‘Mercedes Benz’ (MB) or BN2D water model using Molecular Dynamics. We have studied its dynamical and structural properties dependence on the model’s parameters. For the first time we derived formulas to calculate thermodynamic properties of the MB model in the microcanonical (NVE) ensemble. We also derived equations of motion in the isothermal–isobaric (NPT) ensemble. We have analysed the rotational degree of freedom of the model in both ensembles. We have developed and implemented a self-consistent multiscale method, which is able to communicate micro- and macro- scales. This multiscale method assumes, that matter consists of the two phases. One phase is related to micro- and the other to macroscale. We simulate the macro scale using Landau Lifshitz-Fluctuating Hydrodynamics, while we describe the microscale using Molecular Dynamics. We have demonstrated that the communication between the disparate scales is possible without introduction of fictitious interface or approximations which reduce the accuracy of the information exchange between the scales. We have investigated control parameters, which were introduced to control the contribution of each phases to the matter behaviour. We have shown, that microscales inherit dynamical properties of the macroscales and vice versa, depending on the concentration of each phase. We have shown, that Radial Distribution Function is not altered and velocity autocorrelation functions are gradually transformed, from Molecular Dynamics to Fluctuating Hydrodynamics description, when phase balance is changed. In this work we test our multiscale method for the liquid argon, BN2D and SPC/E water models. For the SPC/E water model we investigate microscale fluctuations which are computed using advanced mapping technique of the small scales to the large scales, which was developed by Voulgarakisand et. al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of the hydrodynamics and mass transfer characteristics of a liquid-liquid extraction process in a 450 mm diameter, 4.30 m high Rotating Disc Contactor (R.D.C.) has been undertaken. The literature relating to this type of extractor and the relevant phenomena, such as droplet break-up and coalescence, drop mass transfer and axial mixing has been revjewed. Experiments were performed using the system C1airsol-350-acetone-water and the effects of drop size, drop size-distribution and dispersed phase hold-up on the performance of the R.D.C. established. The results obtained for the two-phase system C1airso1-water have been compared with published correlations: since most of these correlations are based on data obtained from laboratory scale R.D.C.'s, a wide divergence was found. The hydrodynamics data from this study have therefore been correlated to predict the drop size and the dispersed phase hold-up and agreement has been obtained with the experimental data to within +8% for the drop size and +9% for the dispersed phase hold-up. The correlations obtained were modified to include terms involving column dimensions and the data have been correlated with the results obtained from this study together with published data; agreement was generally within +17% for drop size and within +14% for the dispersed phase hold-up. The experimental drop size distributions obtained were in excellent agreement with the upper limit log-normal distributions which should therefore be used in preference to other distribution functions. In the calculation of the overall experimental mass transfer coefficient the mean driving force was determined from the concentration profile along the column using Simpson's Rule and a novel method was developed to calculate the overall theoretical mass transfer coefficient Kca1, involving the drop size distribution diagram to determine the volume percentage of stagnant, circulating and oscillating drops in the sample population. Individual mass transfer coefficients were determined for the corresponding droplet state using different single drop mass transfer models. Kca1 was then calculated as the fractional sum of these individual coefficients and their proportions in the drop sample population. Very good agreement was found between the experimental and theoretical overall mass transfer coefficients. Drop sizes under mass transfer conditions were strongly dependant upon the direction of mass transfer. Drop Sizes in the absence of mass transfer were generally larger than those with solute transfer from the continuous to the dispersed phase, but smaller than those with solute transfer in the opposite direction at corresponding phase flowrates and rotor speed. Under similar operating conditions hold-up was also affected by mass transfer; it was higher when solute transfered from the continuous to the dispersed phase and lower when direction was reversed compared with non-mass transfer operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis introduces and develops a novel real-time predictive maintenance system to estimate the machine system parameters using the motion current signature. Recently, motion current signature analysis has been addressed as an alternative to the use of sensors for monitoring internal faults of a motor. A maintenance system based upon the analysis of motion current signature avoids the need for the implementation and maintenance of expensive motion sensing technology. By developing nonlinear dynamical analysis for motion current signature, the research described in this thesis implements a novel real-time predictive maintenance system for current and future manufacturing machine systems. A crucial concept underpinning this project is that the motion current signature contains infor­mation relating to the machine system parameters and that this information can be extracted using nonlinear mapping techniques, such as neural networks. Towards this end, a proof of con­cept procedure is performed, which substantiates this concept. A simulation model, TuneLearn, is developed to simulate the large amount of training data required by the neural network ap­proach. Statistical validation and verification of the model is performed to ascertain confidence in the simulated motion current signature. Validation experiment concludes that, although, the simulation model generates a good macro-dynamical mapping of the motion current signature, it fails to accurately map the micro-dynamical structure due to the lack of knowledge regarding performance of higher order and nonlinear factors, such as backlash and compliance. Failure of the simulation model to determine the micro-dynamical structure suggests the pres­ence of nonlinearity in the motion current signature. This motivated us to perform surrogate data testing for nonlinearity in the motion current signature. Results confirm the presence of nonlinearity in the motion current signature, thereby, motivating the use of nonlinear tech­niques for further analysis. Outcomes of the experiment show that nonlinear noise reduction combined with the linear reverse algorithm offers precise machine system parameter estimation using the motion current signature for the implementation of the real-time predictive maintenance system. Finally, a linear reverse algorithm, BJEST, is developed and applied to the motion current signature to estimate the machine system parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GitHub is the most popular repository for open source code (Finley 2011). It has more than 3.5 million users, as the company declared in April 2013, and more than 10 million repositories, as of December 2013. It has a publicly accessible API and, since March 2012, it also publishes a stream of all the events occurring on public projects. Interactions among GitHub users are of a complex nature and take place in different forms. Developers create and fork repositories, push code, approve code pushed by others, bookmark their favorite projects and follow other developers to keep track of their activities. In this paper we present a characterization of GitHub, as both a social network and a collaborative platform. To the best of our knowledge, this is the first quantitative study about the interactions happening on GitHub. We analyze the logs from the service over 18 months (between March 11, 2012 and September 11, 2013), describing 183.54 million events and we obtain information about 2.19 million users and 5.68 million repositories, both growing linearly in time. We show that the distributions of the number of contributors per project, watchers per project and followers per user show a power-law-like shape. We analyze social ties and repository-mediated collaboration patterns, and we observe a remarkably low level of reciprocity of the social connections. We also measure the activity of each user in terms of authored events and we observe that very active users do not necessarily have a large number of followers. Finally, we provide a geographic characterization of the centers of activity and we investigate how distance influences collaboration.