20 resultados para Machine performance
em Aston University Research Archive
Resumo:
The collect-and-place machine is one of the most widely used placement machines for assembling electronic components on the printed circuit boards (PCBs). Nevertheless, the number of researches concerning the optimisation of the machine performance is very few. This motivates us to study the component scheduling problem for this type of machine with the objective of minimising the total assembly time. The component scheduling problem is an integration of the component sequencing problem, that is, the sequencing of component placements; and the feeder arrangement problem, that is, the assignment of component types to feeders. To solve the component scheduling problem efficiently, a hybrid genetic algorithm is developed in this paper. A numerical example is used to compare the performance of the algorithm with different component grouping approaches and different population sizes.
Resumo:
As machine tools continue to become increasingly repeatable and accurate, high-precision manufacturers may be tempted to consider how they might utilise machine tools as measurement systems. In this paper, we have explored this paradigm by attempting to repurpose state-of-the-art coordinate measuring machine Uncertainty Evaluating Software (UES) for a machine tool application. We performed live measurements on all the systems in question. Our findings have highlighted some gaps with UES when applied to machine tools, and we have attempted to identify the sources of variation which have led to discrepancies. Implications of this research include requirements to evolve the algorithms within the UES if it is to be adapted for on-machine measurement, improve the robustness of the input parameters, and most importantly, clarify expectations.
Resumo:
The work presented in this thesis is concerned with the dynamic behaviour of structural joints which are both loaded, and excited, normal to the joint interface. Since the forces on joints are transmitted through their interface, the surface texture of joints was carefully examined. A computerised surface measuring system was developed and computer programs were written. Surface flatness was functionally defined, measured and quantised into a form suitable for the theoretical calculation of the joint stiffness. Dynamic stiffness and damping were measured at various preloads for a range of joints with different surface textures. Dry clean and lubricated joints were tested and the results indicated an increase in damping for the lubricated joints of between 30 to 100 times. A theoretical model for the computation of the stiffness of dry clean joints was built. The model is based on the theory that the elastic recovery of joints is due to the recovery of the material behind the loaded asperities. It takes into account, in a quantitative manner, the flatness deviations present on the surfaces of the joint. The theoretical results were found to be in good agreement with those measured experimentally. It was also found that theoretical assessment of the joint stiffness could be carried out using a different model based on the recovery of loaded asperities into a spherical form. Stepwise procedures are given in order to design a joint having a particular stiffness. A theoretical model for the loss factor of dry clean joints was built. The theoretical results are in reasonable agreement with those experimentally measured. The theoretical models for the stiffness and loss factor were employed to evaluate the second natural frequency of the test rig. The results are in good agreement with the experimentally measured natural frequencies.
Resumo:
High precision manufacturers continuously seek out disruptive technologies to improve the quality, cost, and delivery of their products. With the advancement of machine tool and measurement technology many companies are ready to capitalise on the opportunity of on-machine measurement (OMM). Coupled with business case, manufacturing engineers are now questioning whether OMM can soon eliminate the need for post-process inspection systems. Metrologists will however argue that the machining environment is too hostile and that there are numerous process variables which need consideration before traceable measurement on-the-machine can be achieved. In this paper we test the measurement capability of five new multi-axis machine tools enabled as OMM systems via on-machine probing. All systems are tested under various operating conditions in order to better understand the effects of potentially significant variables. This investigation has found that key process variables such as machine tool warm-up and tool-change cycles can have an effect on machine tool measurement repeatability. New data presented here is important to many manufacturers whom are considering utilising their high precision multi-axis machine tools for both the creation and verification of their products.
Resumo:
Five axis machine tools are increasing and becoming more popular as customers demand more complex machined parts. In high value manufacturing, the importance of machine tools in producing high accuracy products is essential. High accuracy manufacturing requires producing parts in a repeatable manner and precision in compliance to the defined design specifications. The performance of the machine tools is often affected by geometrical errors due to a variety of causes including incorrect tool offsets, errors in the centres of rotation and thermal growth. As a consequence, it can be difficult to produce highly accurate parts consistently. It is, therefore, essential to ensure that machine tools are verified in terms of their geometric and positioning accuracy. When machine tools are verified in terms of their accuracy, the resulting numerical values of positional accuracy and process capability can be used to define design for verification rules and algorithms so that machined parts can be easily produced without scrap and little or no after process measurement. In this paper the benefits of machine tool verification are listed and a case study is used to demonstrate the implementation of robust machine tool performance measurement and diagnostics using a ballbar system.
Resumo:
Due to high-speed rotation, the problems about rotor mechanics and dynamics for outer rotor high-speed machine are more serious than conventional ones, in view of above problems the mechanical and dynamics analysis for an outer rotor high-speed permanent magnet claw pole motor are carried out. The rotor stress analytical calculation model was derived, then the stress distribution is calculated by finite element method also, which is coincided with that calculated by analytical model. In addition, the stress distribution of outer rotor yoke and PMs considering centrifugal force and temperature effect has been calculated, some influence factors on rotor stress distribution have been analyzed such as pole-arc coefficient and speed. The rotor natural frequency and critical speed were calculated by vibration mode analysis, and its dynamics characteristics influenced by gyroscope effect were analyzed based on Campbell diagram. Based on the analysis results above an outer rotor permanent magnet high-speed claw pole motor is design and verified.
Resumo:
The value of technology and the appropriate form of transfer arrangement are important questions to be resolved when transferring technology between Western manufacturing firms and partners in industrialising and developing countries. This article reports on surveys carried out in the machine tool industries in the UK and China to establish the differences and similarities between owners and acquirers of technology regarding the relative importance of the factors they evaluate, and the assessments they make, when considering a technology transfer. It also outlines the development of a framework for technology valuation. The survey results indicate that the value of product technology is related to superior technical performance, especially on reliability and functionality, and the prospects of premium prices and increased sales of the technology transfer based machine tools. Access to markets is the main objective of UK companies, while Chinese companies are concerned about improving their technological capability. There are significant risks, especially related to performance in the market, and while owners and acquirers have benefited in the short term, the long term collaboration required for strategic benefits has been difficult to achieve because of the different priorities of the owners and the acquirers.
Resumo:
Traditional high speed machinery actuators are powered and coordinated by mechanical linkages driven from a central drive, but these linkages may be replaced by independently synchronised electric drives. Problems associated with utilising such electric drives for this form of machinery were investigated. The research concentrated on a high speed rod-making machine, which required control of high inertias (0.01-0.5kgm2), at continuous high speed (2500 r/min), with low relative phase errors between two drives (0.0025 radians). Traditional minimum energy drive selection techniques for incremental motions were not applicable to continuous applications which require negligible energy dissipation. New selection techniques were developed. A brushless configuration constant enabled the comparison between seven different servo systems; the rate earth brushless drives had the best power rates which is a performance measure. Simulation was used to review control strategies, such that a microprocessor controller with a proportional velocity loop within a proportional position loop with velocity feedforward was designed. Local control schemes were investigated as means of reducing relative errors between drives: the slave of a master/slave scheme compensates for the master's errors: the matched scheme has drives with similar absolute errors so the relative error is minimised, and the feedforward scheme minimises error by adding compensation from previous knowledge. Simulation gave an approximate velocity loop bandwidth and position loop gain required to meet the specification. Theoretical limits for these parameters were defined in terms of digital sampling delays, quantisation, and system phase shifts. Performance degradation due to mechanical backlash was evaluated. Thus any drive could be checked to ensure that the performance specification could be realised. A two drive demonstrator was commissioned with 0.01kgm2 loads. By use of simulation the performance of one drive was improved by increasing the velocity loop bandwidth fourfold. With the master/slave scheme relative errors were within 0.0024 radians at a constant 2500 r/min for two 0.01 kgm^2 loads.
Resumo:
This thesis presents an examination of the factors which influence the performance of eddy-current machines and the way in which they affect optimality of those machines. After a brief introduction to the types of eddy-current machine considered, the applications to which these machines are put are examined. A list of parameters by which to assess their performance is obtained by considering the machine as part of a system. in this way an idea of what constitutes an optimal machine is obtained. The third chapter then identifies the factors which affects the performance and makes a quantitative evaluation of the effect. Here the various alternative configurations and components are compared with regard to their influence on the mechanical, electromagnetic, and thermal performance criteria of the machine. Chapter four contains a brief review of the methods of controlling eddy-current machines by electronic methods using thyristors or transistors as the final control element. Where necessary, the results of previous workers in the field of electrical machines have been extended or adapted to increase the usefulness of this thesis.
Resumo:
This thesis introduces and develops a novel real-time predictive maintenance system to estimate the machine system parameters using the motion current signature. Recently, motion current signature analysis has been addressed as an alternative to the use of sensors for monitoring internal faults of a motor. A maintenance system based upon the analysis of motion current signature avoids the need for the implementation and maintenance of expensive motion sensing technology. By developing nonlinear dynamical analysis for motion current signature, the research described in this thesis implements a novel real-time predictive maintenance system for current and future manufacturing machine systems. A crucial concept underpinning this project is that the motion current signature contains information relating to the machine system parameters and that this information can be extracted using nonlinear mapping techniques, such as neural networks. Towards this end, a proof of concept procedure is performed, which substantiates this concept. A simulation model, TuneLearn, is developed to simulate the large amount of training data required by the neural network approach. Statistical validation and verification of the model is performed to ascertain confidence in the simulated motion current signature. Validation experiment concludes that, although, the simulation model generates a good macro-dynamical mapping of the motion current signature, it fails to accurately map the micro-dynamical structure due to the lack of knowledge regarding performance of higher order and nonlinear factors, such as backlash and compliance. Failure of the simulation model to determine the micro-dynamical structure suggests the presence of nonlinearity in the motion current signature. This motivated us to perform surrogate data testing for nonlinearity in the motion current signature. Results confirm the presence of nonlinearity in the motion current signature, thereby, motivating the use of nonlinear techniques for further analysis. Outcomes of the experiment show that nonlinear noise reduction combined with the linear reverse algorithm offers precise machine system parameter estimation using the motion current signature for the implementation of the real-time predictive maintenance system. Finally, a linear reverse algorithm, BJEST, is developed and applied to the motion current signature to estimate the machine system parameters.
Resumo:
The low-energy consumption of IEEE 802.15.4 networks makes it a strong candidate for machine-to-machine (M2M) communications. As multiple M2M applications with 802.15.4 networks may be deployed closely and independently in residential or enterprise areas, supporting reliable and timely M2M communications can be a big challenge especially when potential hidden terminals appear. In this paper, we investigate two scenarios of 802.15.4 network-based M2M communication. An analytic model is proposed to understand the performance of uncoordinated coexisting 802.15.4 networks. Sleep mode operations of the networks are taken into account. Simulations verified the analytic model. It is observed that reducing sleep time and overlap ratio can increase the performance of M2M communications. When the networks are uncoordinated, reducing the overlap ratio can effectively improve the network performance. © 2012 Chao Ma et al.
Resumo:
IEEE 802.15.4 standard has been proposed for low power wireless personal area networks. It can be used as an important component in machine to machine (M2M) networks for data collection, monitoring and controlling functions. With an increasing number of machine devices enabled by M2M technology and equipped with 802.15.4 radios, it is likely that multiple 802.15.4 networks may be deployed closely, for example, to collect data for smart metering at residential or enterprise areas. In such scenarios, supporting reliable communications for monitoring and controlling applications is a big challenge. The problem becomes more severe due to the potential hidden terminals when the operations of multiple 802.15.4 networks are uncoordinated. In this paper, we investigate this problem from three typical scenarios and propose an analytic model to reveal how performance of coexisting 802.15.4 networks may be affected by uncoordinated operations under these scenarios. Simulations will be used to validate the analytic model. It is observed that uncoordinated operations may lead to a significant degradation of system performance in M2M applications. With the proposed analytic model, we also investigate the performance limits of the 802.15.4 networks, and the conditions under which coordinated operations may be required to support M2M applications. © 2012 Springer Science + Business Media, LLC.
Resumo:
Combining the results of classifiers has shown much promise in machine learning generally. However, published work on combining text categorizers suggests that, for this particular application, improvements in performance are hard to attain. Explorative research using a simple voting system is presented and discussed in the light of a probabilistic model that was originally developed for safety critical software. It was found that typical categorization approaches produce predictions which are too similar for combining them to be effective since they tend to fail on the same records. Further experiments using two less orthodox categorizers are also presented which suggest that combining text categorizers can be successful, provided the essential element of ‘difference’ is considered.
Resumo:
Background - The binding between peptide epitopes and major histocompatibility complex proteins (MHCs) is an important event in the cellular immune response. Accurate prediction of the binding between short peptides and the MHC molecules has long been a principal challenge for immunoinformatics. Recently, the modeling of MHC-peptide binding has come to emphasize quantitative predictions: instead of categorizing peptides as "binders" or "non-binders" or as "strong binders" and "weak binders", recent methods seek to make predictions about precise binding affinities. Results - We developed a quantitative support vector machine regression (SVR) approach, called SVRMHC, to model peptide-MHC binding affinities. As a non-linear method, SVRMHC was able to generate models that out-performed existing linear models, such as the "additive method". By adopting a new "11-factor encoding" scheme, SVRMHC takes into account similarities in the physicochemical properties of the amino acids constituting the input peptides. When applied to MHC-peptide binding data for three mouse class I MHC alleles, the SVRMHC models produced more accurate predictions than those produced previously. Furthermore, comparisons based on Receiver Operating Characteristic (ROC) analysis indicated that SVRMHC was able to out-perform several prominent methods in identifying strongly binding peptides. Conclusion - As a method with demonstrated performance in the quantitative modeling of MHC-peptide binding and in identifying strong binders, SVRMHC is a promising immunoinformatics tool with not inconsiderable future potential.
Resumo:
Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.