7 resultados para MOVEMENT TIME
em Aston University Research Archive
Resumo:
National meteorological offices are largely concerned with synoptic-scale forecasting where weather predictions are produced for a whole country for 24 hours ahead. In practice, many local organisations (such as emergency services, construction industries, forestry, farming, and sports) require only local short-term, bespoke, weather predictions and warnings. This thesis shows that the less-demanding requirements do not require exceptional computing power and can be met by a modern, desk-top system which monitors site-specific ground conditions (such as temperature, pressure, wind speed and direction, etc) augmented with above ground information from satellite images to produce `nowcasts'. The emphasis in this thesis has been towards the design of such a real-time system for nowcasting. Local site-specific conditions are monitored using a custom-built, stand alone, Motorola 6809 based sub-system. Above ground information is received from the METEOSAT 4 geo-stationary satellite using a sub-system based on a commercially available equipment. The information is ephemeral and must be captured in real-time. The real-time nowcasting system for localised weather handles the data as a transparent task using the limited capabilities of the PC system. Ground data produces a time series of measurements at a specific location which represents the past-to-present atmospheric conditions of the particular site from which much information can be extracted. The novel approach adopted in this thesis is one of constructing stochastic models based on the AutoRegressive Integrated Moving Average (ARIMA) technique. The satellite images contain features (such as cloud formations) which evolve dynamically and may be subject to movement, growth, distortion, bifurcation, superposition, or elimination between images. The process of extracting a weather feature, following its motion and predicting its future evolution involves algorithms for normalisation, partitioning, filtering, image enhancement, and correlation of multi-dimensional signals in different domains. To limit the processing requirements, the analysis in this thesis concentrates on an `area of interest'. By this rationale, only a small fraction of the total image needs to be processed, leading to a major saving in time. The thesis also proposes an extention to an existing manual cloud classification technique for its implementation in automatically classifying a cloud feature over the `area of interest' for nowcasting using the multi-dimensional signals.
Resumo:
This thesis documents the design, implementation and testing of a smart sensing platform that is able to discriminate between differences or small changes in a persons walking. The distributive tactile sensing method is used to monitor the deflection of the platform surface using just a small number of sensors and, through the use of neural networks, infer the characteristics of the object in contact with the surface. The thesis first describes the development of a mathematical model which uses a novel method to track the position of a moving load as it passes over the smart sensing surface. Experimental methods are then described for using the platform to track the position of swinging pendulum in three dimensions. It is demonstrated that the method can be extended to that of real-time measurement of balance and sway of a person during quiet standing. Current classification methods are then investigated for use in the classification of different gait patterns, in particular to identify individuals by their unique gait pattern. Based on these observations, a novel algorithm is developed that is able to discriminate between abnormal and affected gait. This algorithm, using the distributive tactile sensing method, was found to have greater accuracy than other methods investigated and was designed to be able to cope with any type of gait variation. The system developed in this thesis has applications in the area of medical diagnostics, either as an initial screening tool for detecting walking disorders or to be able to automatically detect changes in gait over time. The system could also be used as a discrete biometric identification method, for example identifying office workers as they pass over the surface.
Resumo:
The research developed in this thesis explores the sensing and inference of human movement in a dynamic way, as opposed to conventional measurement systems, that are only concerned with discrete evaluations of stimuli in sequential time. Typically, conventional approaches are used to infer the dynamic movement of the body; such as vision and motion tracking devices, with either a human diagnosis or complex image processing algorithm to classify the movement. This research is therefore the first of its kind to attempt and provide a movement classifying algorithm through the use of minimal sensing points, with the application for this novel system, to classify human movement during a golf swing. There are two main categories of force sensing. Firstly, array-type systems consisting of many sensing elements, and are the most commonly researched and commercially available. Secondly, reduced force sensing element systems (RFSES) also known as distributive systems have only been recently exploited in the academic world. The fundamental difference between these systems is that array systems handle the data captured from each sensor as unique outputs and suffer the effects of resolution. The effect of resolution, is the error in the load position measurement between sensing elements, as the output is quantized in terms of position. This can be compared to a reduced sensor element system that maximises that data received through the coupling of data from a distribution of sensing points to describe the output in discrete time. Also this can be extended to a coupling of transients in the time domain to describe an activity or dynamic movement. It is the RFSES that is to be examined and exploited in the commercial sector due to its advantages over array-based approaches such as reduced design, computational complexity and cost.
Resumo:
The focus of this paper is young people’s participation in the Occupy protest movement that emerged in the early autumn of 2011. Its concern is with the emotional dimensions of this and in particular the significance of emotions to the reasoning of young people who came to commit significant time and energy to the movement. Its starting point is the critique of emotions as narrowly subjective, whereby the passions that events like Occupy arouse are treated as beyond the scope of human reason. The rightful rejection of this reductionist argument has given rise to an interest in under- standings of the emotional content of social and political protest as normatively con- stituted, but this paper seeks a different perspective by arguing that the emotions of Occupy activists can be regarded as a reasonable force. It does so by discussing find- ings from long-term qualitative research with a Local Occupy movement somewhere in England and Wales. Using the arguments of social realists, the paper explores this data to examine why things matter sufficiently for young people to care about them and how the emotional force that this involves constitutes an indispensable source of reason in young activists’ decisions to become involved in Local Occupy.
Resumo:
Congenital nystagmus (CN) is an ocular-motor disorder characterised by involuntary, conjugated ocular oscillations and its pathogenesis is still under investigation. This kind of nystagmus is termed congenital (or infantile) since it could be present at birth or it can arise in the first months of life. Most of CN patients show a considerable decrease of their visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations, mainly horizontal. However, the image of a given target can still be stable during short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals). To quantify the extent of nystagmus, eye movement recording are routinely employed, allowing physicians to extract and analyse nystagmus main features such as waveform shape, amplitude and frequency. Using eye movement recording, it is also possible to compute estimated visual acuity predictors: analytical functions which estimates expected visual acuity using signal features such as foveation time and foveation position variability. Use of those functions extend the information from typical visual acuity measurement (e.g. Landolt C test) and could be a support for therapy planning or monitoring. This study focuses on detection of CN patients' waveform type and on foveation time measure. Specifically, it proposes a robust method to recognize cycles corresponding to the specific CN waveform in the eye movement pattern and, for those cycles, evaluate the exact signal tracts in which a subject foveates. About 40 eyemovement recordings, either infrared-oculographic or electrooculographic, were acquired from 16 CN subjects. Results suggest that the use of an adaptive threshold applied to the eye velocity signal could improve the estimation of slow phase start point. This can enhance foveation time computing and reduce influence of repositioning saccades and data noise on the waveform type identification.
Resumo:
Along with other diseases that can affect binocular vision, reducing the visual quality of a subject, Congenital Nystagmus (CN) is of peculiar interest. CN is an ocular-motor disorder characterized by involuntary, conjugated ocular oscillations and, while identified more than forty years ago, its pathogenesis is still under investigation. This kind of nystagmus is termed congenital (or infantile) since it could be present at birth or it can arise in the first months of life. The majority of CN patients show a considerable decrease of their visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations, mainly horizontal. However, the image of a given target can still be stable during short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals). To quantify the extent of nystagmus, eye movement recordings are routinely employed, allowing physicians to extract and analyze nystagmus main features such as waveform shape, amplitude and frequency. Use of eye movement recording, opportunely processed, allows computing "estimated visual acuity" predictors, which are analytical functions that estimate expected visual acuity using signal features such as foveation time and foveation position variability. Hence, it is fundamental to develop robust and accurate methods to measure both those parameters in order to obtain reliable values from the predictors. In this chapter the current methods to record eye movements in subjects with congenital nystagmus will be discussed and the present techniques to accurately compute foveation time and eye position will be presented. This study aims to disclose new methodologies in congenital nystagmus eye movements analysis, in order to identify nystagmus cycles and to evaluate foveation time, reducing the influence of repositioning saccades and data noise on the critical parameters of the estimation functions. Use of those functions extends the information acquired with typical visual acuity measurement (e.g., Landolt C test) and could be a support for treatment planning or therapy monitoring. © 2010 by Nova Science Publishers, Inc. All rights reserved.
Foveation time measure in Congenital Nystagmus through second order approximation of the slow phases
Resumo:
Congenital Nystagmus (CN) is an ocular-motor disorder characterised by involuntary, conjugated ocular oscillations, and its pathogenesis is still unknown. The pathology is de fined as "congenital" from the onset time of its arise which could be at birth or in the first months of life. Visual acuity in CN subjects is often diminished due to nystagmus continuous oscillations, mainly on the horizontal plane, which disturb image fixation on the retina. However, during short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals) the image of a given target can still be stable, allowing a subject to reach a higher visual acuity. In CN subjects, visual acuity is usually assessed both using typical measurement techniques (e.g. Landolt C test) and with eye movement recording in different gaze positions. The offline study of eye movement recordings allows physicians to analyse nystagmus main features such as waveform shape, amplitude and frequency and to compute estimated visual acuity predictors. This analytical functions estimates the best corrected visual acuity using foveation time and foveation position variability, hence a reliable estimation of this two parameters is a fundamental factor in assessing visual acuity. This work aims to enhance the foveation time estimation in CN eye movement recording, computing a second order approximation of the slow phase components of nystag-mus oscillations. About 19 infraredoculographic eye-movement recordings from 10 CN subjects were acquired and the visual acuity assessed with an acuity predictor was compared to the one measured in primary position. Results suggest that visual acuity measurements based on foveation time estimation obtained from interpolated data are closer to value obtained during Landolt C tests. © 2010 IEEE.