35 resultados para MORPHOGENETIC PROTEIN 15

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transglutaminases (TGs) stabilize proteins by the formation of ε(γ-glutamyl)lysine cross-links. Here, we demonstrate that the cross-linking of collagen I (COL I) by tissue transglutaminase (TG2) causes an alteration in the morphology and rheological properties of the collagen fibers. Human osteoblasts (HOB) attach, spread, proliferate, differentiate and mineralize more rapidly on this cross-linked matrix compared to native collagen. When seeded on cross-linked COL I, HOB are more resistant to the loss of cell spreading by incubation with RGD containing peptides and with α1, α2 and β1 integrin blocking antibodies. Following adhesion on cross-linked collagen, HOB show increased phosphorylation of the focal adhesion kinase, and increased expression of β1 and β3 integrins. Addition of human bone morphogenetic protein to HOB seeded on TG2 cross-linked COL I enhanced the expression of the differentiation marker bone alkaline phosphatase when compared to cross-linked collagen alone. In summary, the use of TG2-modified COL I provides a promising new scaffold for promoting bone healing. © 2014 Springer-Verlag.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potential role of 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) as an intracellular signal for increased protein catabolism and induction of the expression of key components of the ubiquitin-proteasome proteolytic pathway induced by a tumour cachectic factor, proteolysis-inducing factor has been studied in murine C2C12 myotubes. 15(S)-HETE induced protein degradation in these cells with a maximal effect at concentrations between 78 and 312 nM. The effect was attenuated by the polyunsaturated fatty acid, eicosapentaenoic acid (EPA). There was an increase in 'chymotrypsin-like' enzyme activity, the predominant proteolytic activity of the proteasome, in the same concentration range as that inducing total protein degradation, and this effect was also attenuated by EPA. 15(S)-hydroxyeicosatetraenoic acid also increased maximal expression of mRNA for proteasome subunits C2 and C5, as well as the ubiquitin-conjugating enzyme, E214k, after 4 h incubation, as determined by quantitative competitive RT-PCR. The concentrations of 15-HETE affecting gene expression were the same as those inducing protein degradation. Western blotting of cellular supernatants of myotubes treated with 15(S)-HETE for 24 h showed increased expression of p42, an ATPase subunit of the regulatory complex at similar concentrations, as well as a decrease in expression of myosin in the same concentration range. 15(S)-hydroxyeicosatetraenoic acid activated binding of nuclear factor-κB (NF-κB) in the myotube nucleus and stimulated degradation of 1-κBα. The effect on the NF-κB/1-κBα system was attenuated by EPA. In addition, the NF-κB inhibitor peptide SN50 attenuated the increased chymotrypsin-like enzyme activity in the presence of 15(S)-HETE. These results suggest that 15(S)-HETE induces degradation of myofibrillar proteins in differentiated myotubes through an induction of an increased expression of the regulatory components of the ubiquitin-proteasome proteolytic pathway possibly through the intervention of the nuclear transcription factor NF-κB, and that this process is inhibited by EPA. © 2003 Cancer Research UK.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adiponectin is an abundantly circulating adipokine, orchestrating its effects through two 7-transmembrane receptors (AdipoR1 and AdipoR2). Steroidogenesis is regulated by a variety of neuropeptides and adipokines. Earlier studies have reported adipokine mediated steroid production. A key rate-limiting step in steroidogenesis is cholesterol transportation across the mitochondrial membrane by steroidogenic acute regulatory protein (StAR). Several signalling pathways regulate StAR expression. The actions of adiponectin and its role in human adrenocortical steroid biosynthesis are not fully understood. The aim of this study was to investigate the effects of adiponectin on StAR protein expression, steroidogenic genes, and cortisol production and to dissect the signalling cascades involved in the activation of StAR expression. Using qRT-PCR, Western blot analysis and ELISA, we have demonstrated that stimulation of human adrenocortical H295R cells with adiponectin results in increased cortisol secretion. This effect is accompanied by increased expression of key steroidogenic pathway genes including StAR protein expression via ERK1/2 and AMPK-dependent pathways. This has implications for our understanding of adiponectin receptor activation and peripheral steroidogenesis. Finally, our study aims to emphasise the key role of adipokines in the integration of metabolic activity and energy balance partly via the regulation of adrenal steroid production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcitonin (CT) receptors dimerize with receptor activity-modifying proteins (RAMPs) to create high-affinity amylin (AMY) receptors, but there is no reliable means of pharmacologically distinguishing these receptors. We used agonists and antagonists to define their pharmacology, expressing the CT (a) receptor alone or with RAMPs in COS-7 cells and measuring cAMP accumulation. Intermedin short, otherwise known as adrenomedullin 2, mirrored the action of αCGRP, being a weak agonist at CT(a), AMY 2(a), and AMY3(a) receptors but considerably more potent at AMY1(a) receptors. Likewise, the linear calcitonin gene-related peptide (CGRP) analogs (Cys(ACM)2,7)hαCGRP and (Cys(Et) 2,7)haCGRP were only effective at AMY1(a) receptors, but they were partial agonists. As previously observed in COS-7 cells, there was little induction of the AMY2(a) receptor phenotype; thus, AMY 2(a) was not examined further in this study. The antagonist peptide salmon calcitonin8-32 (sCT8-32) did not discriminate strongly between CT and AMY receptors; however, AC187 was a more effective antagonist of AMY responses at AMY receptors, and AC413 additionally showed modest selectivity for AMY1(a) over AMY3(a) receptors. CGRP8-37 also demonstrated receptor-dependent effects. CGRP 8-37 more effectively antagonized AMY at AMY1(a) than AMY3(a) receptors, although it was only a weak antagonist of both, but it did not inhibit responses at the CT(a) receptor. Low CGRP 8-37 affinity and agonism by linear CGRP analogs at AMY 1(a) are the classic signature of a CGRP2 receptor. Our data indicate that careful use of combinations of agonists and antagonists may allow pharmacological discrimination of CT(a), AMY1(a), and AMY3(a) receptors, providing a means to delineate the physiological significance of these receptors. Copyright © 2005 The American Society for Pharmacology and Experimental Therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated vitamin C supplementation effects on immunoglobulin oxidation (carbonyls) and total plasma protein sulfhydryls in healthy human volunteers. After receiving placebo, plasma ascorbate and oxidation markers were unchanged. Following 5 weeks supplementation with vitamin C (400 mg/day), plasma ascorbate increased but no significant effect on protein oxidation was observed. At 10 and 15 weeks supplementation, carbonyl levels were significantly reduced (P < 0.01) in subjects with low baseline ascorbate (29.51 ± 5.3 μM) but not in those with normal baseline ascorbate (51.81 ± 2.3 μM). To eliminate any effect from seasonal variation in dietary antioxidant intake, a second phase was undertaken. Subjects on vitamin C for 15 weeks were randomly assigned to receive either placebo or vitamin C. No difference in plasma sulfhydryl content was observed. Subjects withdrawn from supplementation showed an increase in immunoglobulin carbonyl content (P < 0.01). This demonstrates that dietary vitamin C supplementation can reduce certain types of oxidative protein damage in subjects with low basal antioxidant. (C) 2000 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generation of neoepitopes on apolipoprotein B within oxidised low-density lipoprotein (LDL) is important in the unregulated uptake of LDL by monocytic scavenger receptors (CD36, SR-AI, LOX-1). Freshly isolated LDL was oxidised by peroxyl radicals generated from the thermal decomposition of an aqueous azo-compound. We describe that formation of carbonyl groups on the protein component is early as protein oxidation was seen after 90min. This is associated with an increased propensity for LDL uptake by U937 monocytes. Three classes of antioxidants (quercetin, dehydroepiandrosterone (DHEA) and ascorbic acid) have been examined for their capacity to inhibit AAPH-induced protein oxidation, (protein carbonyls, Δ electrophoretic mobility and LDL uptake by U937 monocytes). CD36 expression was assessed by flow cytometry and was seen to be unaltered by oxidised LDL uptake. All three classes were effective antioxidants, quercetin (P<0.01), ascorbic acid (P<0.01), DHEA (P<0.05). As LDL protein is the control point for LDL metabolism, the degree of oxidation and protection by antioxidants is likely to be of great importance for (patho)-physiological uptake of LDL by monocytes. © 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein oxidation can be perceived as essential for the control of intracellular signalling and gene expression on the one hand, but in contrast, a potentially cytotoxic hazard of aerobic life. Reduction and oxidation of thiol groups on specific cysteine residues can act as critical molecular switches, in modulating response to growth factors, apoptotic and inflammatory stimuli to name a few. Such oxidative reactions are likely to be transient and represent low levels of oxidative modification to a protein. Sustained oxidative stress conditions through absence of essential dietary antioxidant or low activity of endogenous enzyme scavengers can cause irreversible damage and loss of function. Such modifications are believed to be important in many diseases associated with ageing. Therefore, it has been postulated that diet may exert an influence on the steady state of protein oxidation and thus offer potential health benefits through preservation of normal protein function. In the present paper, the current evidence from in vivo studies on the effects of dietary antioxidants and oxidants on protein oxidation will be evaluated, and needs for future research will be highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 21-residue peptide in explicit water has been simulated using classical molecular dynamics. The system's trajectory has been analysed with a novel approach that quantifies the process of how atom's environment trajectories are explored. The approach is based on the measure of Statistical Complexity that extracts complete dynamical information from the signal. The introduced characteristic quantifies the system's dynamics at the nanoseconds time scale. It has been found that the peptide exhibits nanoseconds long periods that significantly differ in the rates of the exploration of the dynamically allowed configurations of the environment. During these periods the rates remain the same but different from other periods and from the rate for water. Periods of dynamical frustration are detected when only limited routes in the space of possible trajectories of the surrounding atoms are realised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: To determine in the cerebellum in variant Creutzfeldt–Jakob disease (vCJD): (i) whether the pathology affected all laminae; (ii) the spatial topography of the pathology along the folia; (iii) spatial correlations between the pathological changes; and (iv) whether the pathology was similar to that of the common methionine/methionine Type 1 subtype of sporadic CJD. Methods: Sequential cerebellar sections of 15 cases of vCJD were stained with haematoxylin and eosin, or immunolabelled with monoclonal antibody 12F10 against prion protein (PrP) and studied using spatial pattern analysis. Results: Loss of Purkinje cells was evident compared with control cases. Densities of the vacuolation and the protease-resistant form of prion protein (PrPSc) (diffuse and florid plaques) were greater in the granule cell layer (GL) than the molecular layer (ML). In the ML, vacuoles and PrPSc plaques occurred in clusters regularly distributed along the folia with larger clusters of vacuoles and diffuse plaques in the GL. There was a negative spatial correlation between the vacuoles and the surviving Purkinje cells in the ML. There was a positive spatial correlation between the vacuoles and diffuse PrPSc plaques in the ML and GL. Conclusions: (i) all laminae were affected by the pathology, the GL more severely than the ML; (ii) the pathology was topographically distributed along the folia especially in the Purkinje cell layer and ML; (iii) pathological spread may occur in relation to the loop of anatomical connections involving the cerebellum, thalamus, cerebral cortex and pons; and (iv) there were pathological differences compared with methionine/methionine Type 1 sporadic CJD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment of murine myoblasts, myotubes and tumour cells with a tumour-produced lipid mobilizing factor (LMF), caused a concentration-dependent stimulation of protein synthesis, within a 24 h period. There was no effect on cell number or [3H] thymidine incorporation, but a similar concentration-dependent stimulation of 2-deoxyglucose uptake. LMF produced an increase in intracellular cyclic AMP levels, which was linearly (r2 = 0.973) related to the increase in protein synthesis. The effect of LMF was attenuated by the adenylate cyclase inhibitor MDL12330A, and was additive with the stimulation produced by forskolin. Both propranolol (10 μM) and the specific β3-adrenergic receptor antagonist SR 59230A (10-5M), significantly reduced the stimulation of protein synthesis induced by LMF. Protein synthesis was also increased by 69% (P = 0.006) in soleus muscles of mice administered LMF, while there was a 26% decrease in protein degradation (P = 0.03). While LMF had no effect on the lysosomal enzymes, cathepsins B and L, there was a decrease in proteasome activity, as determined both by the 'chymotrypsin-like' enzyme activity, as well as expression of proteasome α-type subunits, determined by Western blotting. These results show that in addition to its lipid-mobilizing activity LMF also increases protein accumulation in skeletal muscle both by an increase in protein synthesis and a decrease in protein catabolism. © 2001 Cancer Research Campaign.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using microarrays to probe protein-protein interactions is becoming increasingly attractive due to their compatibility with highly sensitive detection techniques, selectivity of interaction, robustness and capacity for examining multiple proteins simultaneously. The major drawback to using this approach is the relatively large volumes and high concentrations necessary. Reducing the protein array spot size should allow for smaller volumes and lower concentrations to be used as well as opening the way for combination with more sensitive detection technologies. Dip-Pen Nanolithography (DPN) is a recently developed technique for structure creation on the nano to microscale with the capacity to create biological architectures. Here we describe the creation of miniaturised microarrays, 'mesoarrays', using DPN with protein spots 400× smaller by area compared to conventional microarrays. The mesoarrays were then used to probe the ERK2-KSR binding event of the Ras/Raf/MEK/ERK signalling pathway at a physical scale below that previously reported. Whilst the overall assay efficiency was determined to be low, the mesoarrays could detect KSR binding to ERK2 repeatedly and with low non-specific binding. This study serves as a first step towards an approach that can be used for analysis of proteins at a concentration level comparable to that found in the cellular environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The G-protein coupled receptors--or GPCRs--comprise simultaneously one of the largest and one of the most multi-functional protein families known to modern-day molecular bioscience. From a drug discovery and pharmaceutical industry perspective, the GPCRs constitute one of the most commercially and economically important groups of proteins known. The GPCRs undertake numerous vital metabolic functions and interact with a hugely diverse range of small and large ligands. Many different methodologies have been developed to efficiently and accurately classify the GPCRs. These range from motif-based techniques to machine learning as well as a variety of alignment-free techniques based on the physiochemical properties of sequences. We review here the available methodologies for the classification of GPCRs. Part of this work focuses on how we have tried to build the intrinsically hierarchical nature of sequence relations, implicit within the family, into an adaptive approach to classification. Importantly, we also allude to some of the key innate problems in developing an effective approach to classifying the GPCRs: the lack of sequence similarity between the six classes that comprise the GPCR family and the low sequence similarity to other family members evinced by many newly revealed members of the family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raf kinase inhibitory protein (RKIP) is a physiologic inhibitor of c-RAF kinase and nuclear factor ?B signaling that represses tumor invasion and metastasis. Glycogen synthase kinase-3ß (GSK3ß) suppresses tumor progression by downregulating multiple oncogenic pathways including Wnt signaling and cyclin D1 activation. Here, we show that RKIP binds GSK3 proteins and maintains GSK3ß protein levels and its active form. Depletion of RKIP augments oxidative stress-mediated activation of the p38 mitogen activated protein kinase, which, in turn, inactivates GSK3ß by phosphorylating it at the inhibitory T390 residue. This pathway de-represses GSK3ß inhibition of oncogenic substrates causing stabilization of cyclin D, which induces cell-cycle progression and ß-catenin, SNAIL, and SLUG, which promote epithelial to mesenchymal transition. RKIP levels in human colorectal cancer positively correlate with GSK3ß expression. These findings reveal the RKIP/GSK3 axis as both a potential therapeutic target and a prognosis-based predictor of cancer progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer cachexia is characterised by selective depletion of skeletal muscle protein reserves. The ubiquitin-proteasome proteolytic pathway has been shown to be responsible for muscle wasting in a range of cachectic conditions including cancer cachexia. To establish the importance of this pathway in muscle wasting during cancer (and sepsis), a quantitative competitive RT-PCR (QcRT-PCR) method was developed to measure the mRNA levels of the proteasome sub units C2a and C5ß and the ubiquitin-conjugating enzyme E214k. Western blotting was also used to measure the 20S proteasome and E214k protein expression. In vivo studies in mice bearing a cachexia inducing murine colon adenocarcinoma (MAC16) demonstrated the effect of progressive weight loss on the mRNA and protein expression for 20S proteasome subunits, as well as the ubiquitin-conjugating enzyme, E214k, in gastrocnemius and pectoral muscles. QcRT-PCR measurements showed a good correlation between expression of the proteasome subunits (C2 and CS) and the E214k enzyme mRNA and weight loss in gastrocnemius muscle, where expression increased with increasing weight loss followed by a decrease in expression at higher weight losses (25-27%). Similar results were obtained in pectoral muscles, but with the expression being several fold lower in comparison to that in gastrocnemius muscle, reflecting the different degrees of protein degradation in the two muscles during the process of cancer cachexia. Western blot analysis of 20S and E214k protein expression followed a similar pattern with respect to weight loss as that found with mRNA. In addition, mRNA and protein expression of the 20S proteasome subunits and E214k enzyme was measured in biopsies from cachectic cancer patients, which also showed a good correlation between weight loss and proteasome expression, demonstrating a progressive increase in expression of the proteasome subunits and E214k mRNA and protein in cachectic patients with progressively increasing weight loss.The effect of the cachexia-inducing tumour product PIF (proteolysis inducing factor) and 15-hydroxyeicosatetraenoic acid (15-HETE), the arachidoinic acid metabolite (thought to be the intracellular transducer of PIF action) has also been determined. Using a surrogate model system for skeletal muscle, C2C12 myotubes in vitro, it was shown that both PIF and 15-HETE increased proteasome subunit expression (C2a and C5ß) as well as the E214k enzyme. This increase gene expression was attenuated by preincubation with EPA or the 15-lipoxygenase inhibitor CV-6504; immunoblotting also confirmed these findings. Similarly, in sepsis-induced cachexia in NMRI mice there was increased mRNA and protein expression of the 20S proteasome subunits and the E214k enzyme, which was inhibited by EPA treatment. These results suggest that 15-HETE is the intracellular mediator for PIF induced protein degradation in skeletal muscle, and that elevated muscle catabolism is accomplished through upregulation of the ubiquitin-proteasome-proteolytic pathway. Furthermore, both EPA and CV -6504 have shown anti-cachectic properties, which could be used in the future for the treatment of cancer cachexia and other similar catabolic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein quality of carp diets was assessed by five methods: 1. True digestibility, true NPU, BV (as percentage) and PER were determined for approximately iso-energetic diets containing ca.38% protein from 4 different sources. Fish meal gave values of 94.0, 72.5, 77.0, and 1.21 respectively; egg 93.0, 65.4, 70.3, 1.26; Pruteen 68.4, 63.6, 68.40, 1.36; and Casein 91.0, 56.90, 62.5, 1.33. 2. Blood urea were determined and found to be significantly increased with increasing protein concentration in the diet. 3. Ammonia excretion rate was determined; it increased with a decline in protein quality, being greater on groundnut, rapeseed meal, and sunflower diets than on fishmeal, cottonseed meal, and pruteen. 4. Protein sources were incubated in vitro with digestive fluids of fish. Protein digestibilities for fishmeal diets containing 14 and 27% protein were 90.2 and 93.0% respectively; casein (18 and 36%), 91.5 and 93.2%; soybean (10 and 20%), 84.2 and 85.3% ; sunflower (8 and 16%), 64.2 and 66.1%; and fish meal plus soybean meal (ca. 18.2%) 86.5. 5. Plasma free amino acids were individually determined at 0, 6, 24 and 48 h after force-feeding diets containing 15 and 30% protein from six different sources. Total free AA were highest at 24 h for casein and fishmeal, and at 48 h for egg, soybean, rapeseed and sunflower. The 24 h essential amino acid indices (EAAI) for the six diets at 15% protein were, in the same order, 93.0, 100, 100, 86.4, 62.4, and 97.2. At 30% protein, the 24 h EAAI were 78.5, 84.3, 100, and 83.8 for casein, fishmeal, egg, and rapeseed respectively.