10 resultados para MOLECULAR-MECHANISMS
em Aston University Research Archive
Resumo:
We study the molecular mechanisms of alkali halide ion interactions with the single-wall carbon nanotube surface in water by means of fully atomistic molecular dynamics simulations. We focus on the basic physical-chemical principles of ion–nanotube interactions in aqueous solutions and discuss them in light of recent experimental findings on selective ion effects on carbon nanotubes.
Resumo:
The aquaporin family of integral membrane proteins is comprised of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically-driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves protein kinase A (PKA) activation, influx of extracellular calcium and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine- 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain oedema.
Resumo:
Purpose: Alcohol consumption is inversely correlated with the incidence of cardiovascular disease. It is thought that red wine is specifically responsible for these cardiovascular benefits, due to its ability to reduce vascular inflammation, facilitate vasorelaxation, and inhibit angiogenesis. This is because of its high polyphenolic content. Resveratrol is the main biologically active polyphenol within red wine. Owing to its vascular-enhancing properties, resveratrol may be effective in the microcirculation of the eye, thereby helping prevent ocular diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Such conditions are accountable for worldwide prevalence of visual loss. Method: A review of the relevant literature was conducted on the ScienceDirect, Web of Science, and PubMed databases. Key words used to carry out the searches included 'red wine', 'polyphenols', 'resveratrol', 'eye' and 'ocular'. Articles relating to the effects of resveratrol on the eye were reviewed. Results: The protective effects of resveratrol within the eye are extensive. It has been demonstrated to have anti-oxidant, anti-apoptotic, anti-tumourogenic, anti-inflammatory, anti-angiogenic and vasorelaxant properties. There are potential benefits of resveratrol supplementation across a wide range of ocular diseases. The molecular mechanisms underlying these protective actions are diverse. Conclusion: Evidence suggests that resveratrol may have potential in the treatment of several ocular diseases. However, while there are many studies indicating plausible biological mechanisms using animal models and in-vitro retinal cells there is a paucity of human research. The evidence base for the use of resveratrol in the management of ocular diseases needs to be increased before recommendations can be made for the use of resveratrol as an ocular supplement. © 2014 Springer-Verlag.
Resumo:
We consider the effects of salt (sodium iodide) on pristine carbon nanotube (CNT) dispersions in an organic solvent, N-methyl-2-pyrrolidone (NMP). We investigate the molecular-scale mechanisms of ion interactions with the nanotube surface and we show how the microscopic ion-surface interactions affect the stability of CNT dispersions in NMP. In our study we use a combination of fully atomistic Molecular Dynamics simulations of sodium and iodide ions at the CNT-NMP interface with direct experiments on the CNT dispersions. In the experiments we analyze the effects of salt on the stability of the dispersions by photoluminescence (PL) and optical absorption spectroscopy of the samples as well as by visual inspection. By fully atomistic Molecular Dynamics simulations we investigate the molecular-scale mechanisms of sodium and iodide ion interactions with the nanotube surface. Our simulations reveal that both ions are depleted from the CNT surface in the CNT-NMP dispersions mainly due to the two reasons: (1) there is a high energy penalty for the ion partial desolvation at the CNT surface; (2) NMP molecules form a dense solvation layer at the CNT surface that prevents ions to come close to the CNT surface. As a result, an increase of the salt concentration increases the "osmotic" stress in the CNT-NMP system and, thus, decreases the stability of the CNT dispersions in NMP. Direct experiments confirm the simulation results: addition of NaI salt into the NMP dispersions of pristine CNTs leads to precipitation of CNTs (bundle formation) even at very small salt concentration (∼10 -3 mol L -1). In line with the simulation predictions, the effect increases with the increase of the salt concentration. Overall, our results show that dissolved salt ions have strong effects on the stability of CNT dispersions. Therefore, it is possible to stimulate the bundle formation in the CNT-NMP dispersions and regulate the overall concentration of nanotubes in the dispersions by changing the NaI concentration in the solvent. © 2012 The Royal Society of Chemistry.
Resumo:
Layer 5 contains the major projection neurons of the neocortex and is composed of two major cell types: regular spiking (RS) cells, which have cortico-cortical projections, and intrinsic bursting cells (IB), which have subcortical projections. Little is known about the plasticity processes and specifically the molecular mechanisms by which these two cell classes develop and maintain their unique integrative properties. In this study, we find that RS and IB cells show fundementally different experience-dependent plasticity processes and integrate Hebbian and homeostatic components of plasticity differently. Both RS and IB cells showed TNFα-dependent homeostatic plasticity in response to sensory deprivation, but IB cells were capable of a much faster synaptic depression and homeostatic rebound than RS cells. Only IB cells showed input-specific potentiation that depended on CaMKII autophosphorylation. Our findings demonstrate that plasticity mechanisms are not uniform within the neocortex, even within a cortical layer, but are specialized within subcircuits.
Resumo:
ßElucidating some molecular mechanisms and biochemistry of brain tumours is an important step towards the development of adjuvant medical therapies. The present study concentrates on cholecystokinin (CCK), a gut-brain peptide that has been described to be able to induce mitosis of rat gliomas as well as hormone secretion by the anterior pituitary, via the CCK-B receptor. The significance of a polymorphism in the growth hormone releasing hormone (GHRH) receptor (GHRH-R) gene was also determined. Finally, defects in the ß-catenin gene, an important component of the developmental pathway, in a sub-set of craniopharyngiomas were investigated. Reverse transcription-polymerase chain reaction (RT-PCR), restriction digestion analysis and direct sequencing demonstrated expression of CCK peptide itself and its A and B receptors by human gliomas, meningiomas and pituitary tumours. CCK peptides stimulated growth of cultured gliomas and meningiomas as well as in vitro hormone secretion [growth hormone (GH), luteinizing hormone (LH) and follicle stimulating hormone (FSH)] by human pituitary tumours. These biological effects were reduced or abolished by CCK antagonists. In addition, an antibody to CCK reduced mitosis by gliomas and meningiomas, and the same antibody inhibited hormone secretion by cultured human pituitary tumours. CCK peptides stimulated phosphatidylinositol (PI) hydrolysis, indicating coupling of the CCK receptors to phopsholipase C. Cyclic AMP was unaffected. In addition, caspase-3 activity was significantly and markedly increased, whilst proteasome activity was decreased. Taken together, these results may indicate an autocrine/paracrine role of CCK in the control of growth and/or functioning of gliomas, meningiomas and pituitary tumours. Primer induced restriction analysis (PIRA) of a rarer and alternative polymorphism in the GHRH-R receptor, in which Thr replaces Ala at codon 57, in human GH-secreting pituitary tumours was investigated. Whilst the rarer form correlated with an increased response of the pituitary cells to GHRH in vitro, allele distribution studies revealed that it is unlikely that the polymorphism contributes to increased risk of developing GH-secreting tumours and therefore acromegaly. Further findings of this study, using PCR and direct sequencing, were the demonstration of an association between b-catenin gene alterations and craniopharyngiomas of the adamantinomatous type. Since this gene product is involved with development, these results suggest that p-catenin mutations may contribute to the initiation and subsequent growth of congenital adamantinomatous craniopharyngiomas.
Resumo:
Oxidized phospholipids, such as the products of the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by nonenzymatic radical attack, are known to be formed in a number of inflammatory diseases. Interest in the bioactivity and signaling functions of these compounds has increased enormously, with many studies using cultured immortalized and primary cells, tissues, and animals to understand their roles in disease pathology. Initially, oxidized phospholipids were viewed largely as culprits, in line with observations that they have proinflammatory effects, enhancing inflammatory cytokine production, cell adhesion and migration, proliferation, apoptosis, and necrosis, especially in vascular endothelial cells, macrophages, and smooth muscle cells. However, evidence has emerged that these compounds also have protective effects in some situations and cell types; a notable example is their ability to interfere with signaling by certain Toll-like receptors (TLRs) induced by microbial products that normally leads to inflammation. They also have protective effects via the stimulation of small GTPases and induce up-regulation of antioxidant enzymes and cytoskeletal rearrangements that improve endothelial barrier function. Oxidized phospholipids interact with several cellular receptors, including scavenger receptors, platelet-activating factor receptors, peroxisome proliferator-activated receptors, and TLRs. The various and sometimes contradictory effects that have been observed for oxidized phospholipids depend on their concentration, their specific structure, and the cell type investigated. Nevertheless, the underlying molecular mechanisms by which oxidized phospholipids exert their effects in various pathologies are similar. Although our understanding of the actions and mechanisms of these mediators has advanced substantially, many questions do remain about their precise interactions with components of cell signaling pathways.
Resumo:
Apoptosis is an important cell death mechanism by which multicellular organisms remove unwanted cells. It culminates in a rapid, controlled removal of cell corpses by neighboring or recruited viable cells. Whilst many of the molecular mechanisms that mediate corpse clearance are components of the innate immune system, clearance of apoptotic cells is an anti-inflammatory process. Control of cell death is dependent on competing pro-apoptotic and anti-apoptotic signals. Evidence now suggests a similar balance of competing signals is central to the effective removal of cells, through so called 'eat me' and 'don't eat me' signals. Competing signals are also important for the controlled recruitment of phagocytes to sites of cell death. Consequently recruitment of phagocytes to and from sites of cell death can underlie the resolution or inappropriate propagation of cell death and inflammation. This article highlights our understanding of mechanisms mediating clearance of dying cells and discusses those mechanisms controlling phagocyte migration and how inappropriate control may promote important pathologies. © the authors, publisher and licensee libertas academica limited.
Resumo:
Protein oxidation is increasingly recognised as an important modulator of biochemical pathways controlling both physiological and pathological processes. While much attention has focused on cysteine modifications in reversible redox signalling, there is increasing evidence that other protein residues are oxidised in vivo with impact on cellular homeostasis and redox signalling pathways. A notable example is tyrosine, which can undergo a number of oxidative post-translational modifications to form 3-hydroxy-tyrosine, tyrosine crosslinks, 3-nitrotyrosine and halogenated tyrosine, with different effects on cellular functions. Tyrosine oxidation has been studied extensively in vitro, and this has generated detailed information about the molecular mechanisms that may occur in vivo. An important aspect of studying tyrosine oxidation both in vitro and in biological systems is the ability to monitor the formation of oxidised derivatives, which depends on a variety of analytical techniques. While antibody-dependent techniques such as ELISAs are commonly used, these have limitations, and more specific assays based on spectroscopic or spectrometric techniques are required to provide information on the exact residues modified and the nature of the modification. These approaches have helped understanding of the consequences of tyrosine oxidation in biological systems, especially its effects on cell signalling and cell dysfunction, linking to roles in disease. There is mounting evidence that tyrosine oxidation processes are important in vivo and can contribute to cellular pathology.
Resumo:
Since the first discovery of S100 members in 1965, their expressions have been affiliated with numerous biological functions in all cells of the body. However, in the recent years, S100A4, a member of this superfamily has emerged as the central target in generating new avenue for cancer therapy as its overexpression has been correlated with cancer patients’ mortality as well as established roles as motility and metastasis promoter. As it has no catalytic activity, S100A4 has to interact with its target proteins to regulate such effects. Up to date, more than 10 S100A4 target proteins have been identified but the mechanical process regulated by S100A4 to induce motility remains vague. In this work, we demonstrated that S100A4 overexpression resulted in actin filaments disorganisation, reduction in focal adhesions, instability of filopodia as well as exhibiting polarised morphology. However, such effects were not observed in truncated versions of S100A4 possibly highlighting the importance of C terminus of S100A4 target recognition. In order to assess some of the intracellular mechanisms that may be involved in promoting migrations, different strategies were used, including active pharmaceutical agents, inhibitors and knockdown experiments. Treatment of S100A4 overexpressing cells with blebbistatin and Y-27632, non muscle myosin IIA (NMMIIA) inhibitors, as well as knockdown of NMMIIA, resulted in motility enhancement and focal adhesions reduction proposing that NMMIIA assisted S100A4 in regulating cell motility but its presence is not essential. Further work done using Cos 7 cell lines, naturally lacking NMMIIA, further demonstrated that S100A4 is capable of regulating cell motility independent of NMMIIA, possibly through poor maturation of focal adhesion. Given that all these experiments highlighted the independency of NMMIIA towards migration, a protein that has been put at the forefront of S100A4-induced motility, we aimed to gather further understanding regarding the other molecular mechanisms that may be at play for motility. Using high throughput imaging (HCI), 3 compounds were identified to be capable of inhibiting S100A4-mediated migration. Although we have yet to investigate the underlying mechanism for their effects, these compounds have been shown to target membrane proteins and the externalisation of S100 proteins, for at least one of the compounds, leading us to speculate that preventing externalisation of S100A4 could potentially regulate cell motility.