19 resultados para MODEL COMPOUNDS
em Aston University Research Archive
Resumo:
Cell-wall components (cellulose, hemicellulose (oat spelt xylan), lignin (Organosolv)), and model compounds (levoglucosan (an intermediate product of cellulose decomposition) and chlorogenic acid (structurally similar to lignin polymer units)) have been investigated to probe in detail the influence of potassium on their pyrolysis behaviours as well as their uncatalysed decomposition reaction. Cellulose and lignin were pretreated to remove salts and metals by hydrochloric acid, and this dematerialized sample was impregnated with 1% of potassium as potassium acetate. Levoglucosan, xylan and chlorogenic acid were mixed with CHCOOK to introduce 1% K. Characterisation was performed using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In addition to the TGA pyrolysis, pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) analysis was introduced to examine reaction products. Potassium-catalysed pyrolysis has a huge influence on the char formation stage and increases the char yields considerably (from 7.7% for raw cellulose to 27.7% for potassium impregnated cellulose; from 5.7% for raw levoglucosan to 20.8% for levoglucosan with CHCOOK added). Major changes in the pyrolytic decomposition pathways were observed for cellulose, levoglucosan and chlorogenic acid. The results for cellulose and levoglucosan are consistent with a base catalysed route in the presence of the potassium salt which promotes complete decomposition of glucosidic units by a heterolytic mechanism and favours its direct depolymerization and fragmentation to low molecular weight components (e.g. acetic acid, formic acid, glyoxal, hydroxyacetaldehyde and acetol). Base catalysed polymerization reactions increase the char yield. Potassium-catalysed lignin pyrolysis is very significant: the temperature of maximum conversion in pyrolysis shifts to lower temperature by 70 K and catalysed polymerization reactions increase the char yield from 37% to 51%. A similar trend is observed for the model compound, chlorogenic acid. The addition of potassium does not produce a dramatic change in the tar product distribution, although its addition to chlorogenic acid promoted the generation of cyclohexane and phenol derivatives. Postulated thermal decomposition schemes for chlorogenic acid are presented. © 2008 Elsevier B.V. All rights reserved.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The metabolism of compounds containing the N-methyl group is discussed with particular consideration being made to the possible role of the product of oxidative metabolism, the N-hydroxymethyl moiety, in the generation of potentially toxic, reactive electrophiles. Particular pathways which are considered are: (i), the production of formaldehyde; (ii), the generation of iminium ions or imines; and (iii), the formation of N-formyl compounds which might act as formylating agents. 4-Chloro-N-(hydroxymethyl)benzamide and 3-(4-chlorophenyl)-1-hydroxy-methyl-1-methylurea (the product of oxidative metabolism of 3-(4-chlorophenyl)-1,1-dimethylurea) are model carbinolamides which do not readily release formaldehyde. The electrophilic properties of these model carbinolamides were investigated: neither reacted with nucleophiles such as cyanide or glutathione under physiological conditions. In contrast, N-(acetoxymethyl)-4-chlorobenzamide yielded the cyanomethylamide with potassium cyanide and S-(4-chlorobenzamidomethyl)glutathione with glutathione. 4-Chloro-N-(hydroxymethyl)benzamide and 3-(4-chlorophenyl)-1,1-dimethylurea were not biotransformed to electrophilic moieties when incubated with mouse hepatic 9000 x g supernatant and Acetyl-CoA or PAPS-generating system. N-(Acetoxymethyl)-4-chlorobenzamide was non-mutagenic to Salmonella typhimurium in the short term bacterial assay; but toxicity to the bacteria was observed. 4-Chloro-N-(hydroxymethyl)benzamide and 3-(4-chlorophenyl)-1,1-dimethylurea showed no mutagenicity or toxicity in the mutagenicity assay including an Aroclor-induced rat hepatic 9000 x g supernatant. Addition of Acetyl-CoA or a PAPS-generating system did not produce a mutagenic response. 4-Chloro-N-formlbenzamide did not act as a formylating agent towards the weak nucleophile aniline. However, 4-chloro-N-formylbenzamide, N-formylbenzamide, 3-(4-chlorophenyl)-1-formyl-1-methylurea and 3-(4-chlorophenyl)-1-formylurea are all metabolised by mouse hepatic mirosomes and post-microsomal supernatant. The results demonstrate the potential for N-hydroxymethyl compounds to generate highly reactive species if these are substrates for conjugation with sulphate (or acetate). The model compounds employed here, apparently do not show any ability to be conjugated themselves, however, other N-hydroxymethyl compounds might be readily conjugated. The formation of N-formyl compounds does not appear to be toxicologically significant, as adjudged on limited experiments performed, but rather represent a detoxification pathway.
Resumo:
Reproducible preparation of a number of modified clay and clay~like materials by both conventional and microwave-assisted chemistry, and their subsequent characterisation, has been achieved, These materials are designed as hydrocracking catalysts for the upgrading of liquids obtained by the processing of coal. Contact with both coal derived liquids and heavy petroleum resids has demonstrated that these catalysts are superior to established proprietary catalysts in terms of both initial activity and deactivation resistance, Of particular activity were a chromium-pillared montmorillonite and a tin intercalated laponite, Layered Double Hydroxides (LDH's) have exhibited encouraging thermal stability. Development of novel methods for hydrocracking coal derived liquids, using a commercial microwave oven, modified reaction vessels and coal model compounds has been attempted. Whilst safe and reliable operation of a high pressure microwave "bomb" apparatus employing hydrogen, has been achieved, no hydrotreatment reactions occurred,
Resumo:
The thermal oxidation of two model compounds representing the aromatic polyamide, MXD6 (poly m-xylylene adipamide) have been investigated. The model compounds (having different chemical structures, viz, one corresponding to the aromatic part of the chain and the other to the aliphatic part), based on the structure of MXD6 were prepared and reactions with different concentrations of cobalt ions examined with the aim of identifying the role of the different structural components of MXD6 on the mechanism of oxidation. The study showed that cobalt, in the presence of sodium phosphite (which acts as an antioxidant for MXD6 and the model compounds), increases the oxidation of the model compounds. It is believed that the cobalt acts predominantly as a catalyst for the decomposition of hydroperoxides, formed during oxidation of the models in the melt phase, to free radical products and to a lesser extent as a catalyst for the initiation of the oxidation reaction by complex formation with the amide, which is more likely to take place in the solid phase. An oxidation cycle has been proposed consisting of two parts both of which will occur, to some extent under all conditions of oxidation (in the melt and in the solid phase), but their individual predominance must be determined by the prevailing oxygen pressure at the reaction site. The different aspects of this proposed mechanism were examined from extensive model compound studies, and the evidence based on the nature of product formation and the kinetics of these reactions. Main techniques used to compare the rates of oxidation and the study of kinetics included, oxygen absorption, FT-IR, UV and TGA. HPLC was used for product separation and identification.
Resumo:
This thesis is concerned with the development of hydrogels that adhere to skin and can be used for topical or trans dermal release of active compounds for therapeutic or cosmetic use. The suitability of a range of monomers and initiator systems for the production of skin adhesive hydro gels by photopolymerisation was explored and an approximate order of monomer reactivity in aqueous solution was determined. Most notably, the increased reactivity of N-vinyl pyrrolidone within an aqueous system, as compared to its low rate of polymerisation in organic solvents, was observed. The efficacy of a series of photoinitiator systems for the preparation of sheet hydrogels was investigated. Supplementary redox and thermal initiators were also examined. The most successful initiator system was found to be Irgacure 184, which is commonly used in commercial moving web production systems that employ photopolymerisation. The influence of ionic and non-ionic monomers, crosslinking systems, water and glycerol on the adhesive and dynamic mechanical behaviour of partially hydrated hydrogel systems was examined. The aim was to manipulate hydrogel behaviour to modify topical and transdermal delivery capability and investigated the possibility of using monomer combinations that would influence the release characteristics of gels by modifying their hydrophobic and ionic nature. The copolymerisation of neutral monomers (N-vinyl pyrrolidone, N,N-dimethyl acrylamide and N-acryloyl morpholine) with ionic monomers (2-acrylamido-2-methylpropane sulphonic acid; sodium salt, and the potassium salt of 3-sulphopropyl acrylate) formed the basis of the study. Release from fully and partially hydrated hydrogels was studied, using model compounds and a non-steroidal anti-inflammatory drug, Ibuprofen. Release followed a common 3-stage kinetic profile that includes an initial burst phase, a secondary phase of approximate first order release and a final stage of infinitesimally slow release such that the compound is effectively retained within the hydrogel. Use of partition coefficients, the pKa of the active and a knowledge of charge-based and polar interactions of polymer and drug were complementary in interpreting experimental results. In summary, drug ionisation, hydrogel composition and external release medium characteristics interact to influence release behaviour. The information generated provides the basis for the optimal design of hydrogels for specific dermal release applications and some understanding of the limitations of these systems for controlled release applications.
Resumo:
The aim of this work was to use extremely low concentrations of free radical generating compounds as a 'catalyst' to trigger endogenous free radical chain reactions in the host and to selectively eliminate neoplastic cells in the host. To test the hypothesis, a number of free radical generating compounds were screened on several malignant cell lines in vitro to select model compounds that were used against tumour models in vivo. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and its derivatives were selected at the model compounds for in vivo experiments in view of their high cytotoxic potency against several malignant cell lines in vitro. The water soluble derivative, 2,2-diphenyl-1-(2', 4'-dinitro-6'-sulphophenyl) hydrazyl (DDSH) given by subcutaneous injections demonstrated significant antitumour activities against the MAC 16 murine colon adenocarcinoma implanted subcutaneously in male NMRI mice at nanomolar concentration range. 40-60% of long term survival of over 60 days was achieved (compared with control survival of 20 days) with total tumour elimination. This compound was also active against both P388 leukaemia in male BDF1 mice and TLX5 lymphoid tumour in male CBA/CA mice at a similar concentration range. However, some of these animals died suddenly after treatment with no evidence of disease present at post mortem. The cause of death was unknown but thought to be related to the treatment. There was significant increase in serum level of malondialdehyde (MDA) following treatment, but did not correlate to the antitumour activities of these compounds. Induction of supcroxide dismutase (SOD), and glutathione peroxidase (GPx) occurred around day 8 after the administration of DDSH. Histological sections of MAC16 tumours showed areas of extensive massive haemorrhagic necrosis and vascular collapse associated with perivascular cell death following the administration of nanomolar concentration of DDSH which was probably compatible with the effects of free radicals. It was concluded that the antitumour activities of these compounds may be related to free radical and cytokine production.
Resumo:
An investigation into the mechanism by which ethylene thiourea (ETU) cross-links polychloroprene (CR) in combination with zinc oxide (ZnO) was undertaken. This was achieved through an examination of the mechanisms of crosslinking CR with ETU and ZnO separately and in unison. Spectroscopic and physical characterization techniques were employed to probe the cross-linking mechanisms of CRusing other standard rubber accelerators and model compounds with analogous structures and functionalities to ETU. These investigations have resulted in the proposal of a new mechanism by which ETU and ZnO can synergistically cross-link CR, in addition to providing new evidence to support concomitant mechanisms already published for cross-linking CR.
Resumo:
Es wurde eine Untersuchung zum Mechanismus der Vernetzung von Polychloropren durch Ethylenthioharnstoff in Kombination mit Zinkoxid durchgeführt. Dies wurde mit einer Überprüfung der Vernetzungsmechanismen von Polychloroprenkautschuk mit Ethylenthioharnstoff und Zinkoxid getrennt bzw. gemeinsam erreicht. Dabei kamen spektroskopische und physikalische Charakterisierungsverfahren zum Einsatz, um die Vernetzungsmechanismen von CR mit anderen Standardvulkanisationsbeschleunigern und Modellverbindungen – mit ETU-analogen Strukturen und Funktionalitäten – zu erforschen. Aus den Untersuchungen resultierte der Vorschlag zu einem neuen Mechanismus, nach dem ETU und ZnO Polychloropren synergistisch vernetzen. Zusätzlich wurden neue Hinweise gewonnen, die gleichzeitig bestehende Mechanismen, die schon zur Vernetzung von Polychloropren veröffentlicht wurden, untermauern. An investigation into the mechanism by which ethylene thiourea crosslinks polychloroprene in combination with zinc oxide was undertaken. This was achieved through an examination of the mechanisms of crosslinking polychloroprene rubber with ETU and ZnO separately and in unison. Spectroscopic and physical characterisation techniques were employed to probe the crosslinking mechanisms of CR using other standard rubber accelerators and model compounds with analogous structures and functionalities to ETU. These investigations have resulted in the proposal of a new mechanism by which ETU and ZnO can synergistically crosslink polychloroprene, in addition to providing new evidence to support concomitant mechanisms already published for crosslinking polychloroprene.
Resumo:
The reactions of group 16 heterocycles with organometallic reagents are described. Thiophenes have been used as models for organic sulfur in coal and their reactivity towards triiron dodecacarbonyl has been investigated. Reaction of unsubstituted thiophene with Fe3(CO)12 results in desulfurisation of the heterocycle, with the organic fragment being recovered in the form of the ferrole, C4H4.Fe2(CO)6. In addition a novel organometallic compound of iron is isolated, the formula of which is shown to be C4H4.Fe3(CO)8. Bezothiophene reacts with Fe3(CO)12 to yield benzothiaferrole, C8H6S.Fe2(CO)6, in which the sulfur is retained in the heterocycle. Dibenzothiophene, a more accurate model for organic sulfur in coal, displays no reactivity towards the iron carbonyl, suggesting that the more condensed systems will desulfurise less readily. Microwave methodology has been successful in accelerating the reactions of thiophenes with Fe3(CO)12. However, reaction of benzothiophene does not proceed to the desulfurisation stage while dibenzothiophene is unreactive even under microwave conditions. Tellurophenes (Te analogues of thiophenes) are shown to mimic the behaviour of thiophenes towards certain organometallic reagents with the advantage that their greater reactivity enables recovery of products in higher yields. Hence, reaction of tellurophene with Fe3(CO)12 again affords the ferrole but with an almost ten-fold increase in yield over thiophene. More significantly, dibenzotellurophene is also detellurated by the iron carbonyl affording the previously inaccessible dibenzoferrole, C12H8.Fe2(CO)6, thereby demonstrating the mechanistic feasibility of dechalcogenation of the more condensed aromatic molecules. The potential of tellurium heterocycles to act as precursors for novel organometallics is also recognised owing to the relatively facile elimination of the heteroatom from these systems. Thus, 2-telluraindane reacts with Fe3(CO)12 to yield a novel organometallic compound of formula C16H16.Fe(CO)3, arising from the unsymmetric dimerisation of two organic fragments.
Resumo:
Four novel oxapenem compounds were evaluated for their ß-lactamase inhibitory and antibacterial properties. Two (AM-112 and AM-113) displayed intrinsic antibacterial activity with MICs of between 2 to 16µg/ml and 0.5-2µg/ml against Escherichia coli and methicillin-sensitive and -resistant Staphylococcus aureus, respectively. The isomers of these compounds, AM-115 and AM-114 did not display significant antibacterial activity. Combination of the oxapenems with ceftazidime afforded protection against ß-lactamase-producing strains, including hyperproducers of class C enzymes and extended-spectrum ß-lactamase enzymes. A fixed 4µg/ml concentration of AM-112 protected a panel of eight cephalosporins against hydrolysis by class A and class C ß-lactamase producers. In vivo studies confirmed the protective effect of AM-112 for ceftazidime against ß-lactamase producing S. aureus, Enterobacter cloacae and E. coli strains in a murine intraperitoneal infection model. Each of the oxapenems inhibited class A, class C and class D ß-lactamases isolated from whole cells and purified by isoelectric focusing. AM-114 and AM-115 were as effective as clavulanic acid against class A enzymes. AM-112 and AM-113 were less potent against these enzymes. Class C and class D enzymes proved very susceptible to inhibition by the oxapenems. Molecular modelling of the oxapenems in the active site of the class A. TEM-1 and class C P99 enzymes identified a number of potential sites of interaction. The modelling suggested that Ser-130 in TEM-1 and Tyr-150 in P99 were likely candidates for cross-linking of the inhibitor, leading to inhibition of the enzyme. Morphology studies indicated that sub-inhibitory concentrations of the oxapenems caused the formation of round-shaped cells in E. coli DC0, indicating inhibition of penicillin-binding protein 2 (PBP2). The PBP affinity profile of AM-112 was examined in isolated cell membranes of E. coli DC0, S. aureus NCTC 6571, Enterococcus faecalis SFZ and E. faecalis ATCC 29213, in competition with a radiolabelled penicillin. PBP2 was identified as the primary target for AM-112 in E. coli DC0. Studies on S. aureus NCTC 6571 failed to identify a binding target. AM-112 bound to all the PBPs of both E. faecalis strains, and a concentration of 10µg/ml inhibited all the PBPs except PBP3.
Resumo:
In vitro studies of drug absorption processes are undertaken to assess drug candidate or formulation suitability, mechanism investigation, and ultimately for the development of predictive models. This study included each of these approaches, with the aim of developing novel in vitro methods for inclusion in a drug absorption model. Two model analgesic drugs, ibuprofen and paracetamol, were selected. The study focused on three main areas, the interaction of the model drugs with co-administered antacids, the elucidation of the mechanisms responsible for the increased absorption rate observed in a novel paracetamol formulation and the development of novel ibuprofen tablet formulations containing alkalising excipients as dissolution promoters.Several novel dissolution methods were developed. A method to study the interaction of drug/excipient mixtures in the powder form was successfully used to select suitable dissolution enhancing exicipents. A method to study intrinsic dissolution rate using paddle apparatus was developed and used to study dissolution mechanisms. Methods to simulate stomach and intestine environments in terms of media composition and volume and drug/antacid doses were developed. Antacid addition greatly increased the dissolution of ibuprofen in the stomach model.Novel methods to measure drug permeability through rat stomach and intestine were developed, using sac methodology. The methods allowed direct comparison of the apparent permeability values obtained. Tissue stability, reproducibility and integrity was observed, with selectivity between paracellular and transcellular markers and hydrophilic and lipophilic compounds within an homologous series of beta-blockers.
Resumo:
The effects of ionisation on transdermal drug delivery using excised human epidermis (HS) and silastic rubber (SR) as model permeation barriers were investigated in vitro using Franz-type absorption cells. Suspensions and solutions of salicylic acid (SA), the model ionogenic permeant, were used as donors and the variables studied were vehicle pH and trans-membrane pH-gradients. For solutions, the pH effect was related to the level of ionisation of the drug and the degree of saturation of the solution. With suspensions, the observed permeation rate was unaffected by pH. The penetration profiles through HS and SR were similar, although the overall flux through HS was about 70% of that observed through SR. Pretreatment of the membranes with various enhancer regimens, including oleic acid, Azone and N, N-dimethylamides in propylene glycol (PG) and isopropyl myristate (IPM) promoted the penetration of SA. SR was not a suitable model for enhancer pretreatment using IPM as a vehicle as the membrane was significantly disrupted by this vehicle. The results from comparable experiments with and without a trans-membrane pH-gradient did not have a significant effect upon flux or flux enhancement after pretreatment with the above enhancers. A theoretical model for the extraction coefficients of weak acids was derived using the partition coefficients of the ionised and unionised species, pH and pKa. This model was shown to account for the variation in overall partition of salicylic acid dependent upon pH and pKa. This model was shown to account for the variation in overall partition of salicylic acid dependent upon pH and pKa. The distribution of this solute between aqueous and oily phases, with and without added enhancer, was measured as a function of pH. The extraction coefficients determined were consistent with the model and showed that the behaviour of the system can be explained without referral to ion-pair mechanisms. Phosphonoacetate is an effective antiviral agent. However, as it is charged at physiological pH, its permeation across cell membranes is limited. To assess the improvement of the transport properties of this molecule, mono-, di- and tri-ester prodrugs were examined. These were assessed for stability and subsequent breakdown with respect to pH by HPLC. In vitro percutaneous absorption was observed using the triester, but not the ionic mono- or di-esters. The triester absorption could be potentiated using a range of enhancers with oleic acid being the most effective. Cyclodextrins (CD) have a role as absorption enhancers for peptide compounds across nasal epithelium. One potential mode of action is that CDs include these compounds, protect them from enzymic attack and thereby increase their residence time in the nasal epithelium. This study investigated the potential of CDs to protect ester prodrugs from enzymatic breakdown and prevent production of poorly transportable ionic species. Using a range of CD to ester molar ratios (10:1 to 2500:1) a small, but measurable, protection for the model esters (parabens) against esterase attack was observed. Possible mechanisms for this phenomenon are that CDs include the ester, making it unavailable for hydrolysis, the CDs may also affect the esterase in some way preventing access for the ester into the active site.
Resumo:
The transport of a group of quinolone antibiotics across the human intestinal model, Caco-2 cells, was investigated. It was found that the transport of the quinolones generally correlated with the lipophilicity of the compounds, indicating the passive diffusional transcellular processes were involved. However, it was observed that the transport in both directions apical-to-basolateral and basolateral-to-apical was not equivalent, and polarised transport occurred. For all the quinolones studied except, BMS-284756-01, it was found that the basolateral-to-apical transport was significantly greater than the apical-to-basolateral transport. This finding suggested that the quinolones underwent a process of active secretion. The pKas and logPs for the quinolones were determined using potentiometric titrations. The measured logP values were compared with those determined using theoretical methods. The theoretical methods for calculating logP including the Moriguchi method correlated poorly with the measured logP values. Further investigations revealed that there may be an active transporter involved in the apical-to-basolateral transport of quinolones as well. This mechanism was sensitive to competing quinolones, but, it was unaffected by the metabolic inhibitor combination of sodium azide (15mM) with 2-deoxy-D-glucose (50mM). The basolateral-to-apical transport of quinolones was found to be sensitive to inhibition by a number of different inhibitors. The metabolic inhibitors, sodium azide (15mM) with 2-deoxy-D-glucose (50mM) and 2,4-dinitrophenol (1mM), were able to reduce the basolateral-to-apical transport of quinolones. A reduction in temperature from 37°C to 2°C caused an 80-fold decrease in the transport of gatifloxacin in both directions, however, this effect was not sufficient to abolish the greater basolateral-to-apical secretion. As with apical-to-basolateral transport, it was found that quinolones competed with gatifloxacin for basolateral-to-apical transport, both ofloxacin (100μM) and norfloxacin (100μM) significantly (P<0.003) decreased the basolateral-to-apical transport of gatifloxacin; however, ciprofloxacin (100μM and 300μM) had no effect. A number of inhibitors of various transport systems were also investigated. It was found that the anion transport inhibitor, probenecid (100 μM) had a significant inhibitory effect on the basolateral-to-apical transport of ciprofloxacin (P=0.039), while the cation transport inhibitor cimetidine (100μM and 500μM) had no effect. The organic anion exchange inhibitor 4,4'diisothiocyanostilbene-2-2' -disulphonic acid DIDS (400μM) also had a significant inhibitory effect (P=O.O 13). The PgP inhibitor and anion exchange inhibitor verapamil (400Mμ) was able to completely abolish the basolateral-to-apical secretion of gatifloxacin and bring it into line with the apical-to-basolateral flux. In conclusion, the apical-to-basolateral and basolateral-toapical transport of quinolones involved an active component. The basolateral-to-apical secretion was abolished by a verapamil (400μM), a bisubstrate for PgP and the anion transporter.
Resumo:
The number of new chemical entities (NCE) is increasing every day after the introduction of combinatorial chemistry and high throughput screening to the drug discovery cycle. One third of these new compounds have aqueous solubility less than 20µg/mL [1]. Therefore, a great deal of interest has been forwarded to the salt formation technique to overcome solubility limitations. This study aims to improve the drug solubility of a Biopharmaceutical Classification System class II (BCS II) model drug (Indomethacin; IND) using basic amino acids (L-arginine, L-lysine and L-histidine) as counterions. Three new salts were prepared using freeze drying method and characterised by FT-IR spectroscopy, proton nuclear magnetic resonance ((1)HNMR), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). The effect of pH on IND solubility was also investigated using pH-solubility profile. Both arginine and lysine formed novel salts with IND, while histidine failed to dissociate the free acid and in turn no salt was formed. Arginine and lysine increased IND solubility by 10,000 and 2296 fold, respectively. An increase in dissolution rate was also observed for the novel salts. Since these new salts have improved IND solubility to that similar to BCS class I drugs, IND salts could be considered for possible waivers of bioequivalence.