9 resultados para MOBILITY 2-DIMENSIONAL ELECTRON

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the energy levels predicted by a frac(1, N)-expansion method for an N-dimensional electron in an anharmonic potential are always lower than the exact energy levels but monotonically converge toward their exact eigenstates for higher ordered corrections. The technique allows a systematic approach for quantum many body problems in a confined potential and explains the remarkable agreement of such approximate theories when compared with numerical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interlayer pores of swelling 2:1 clays provide an ideal 2-dimensional environment in which to study confined fluids. In this paper we discuss our understanding of the structure and dynamics of interlayer fluid species in expanded clays, based primarily on the outcome of recent molecular modelling and neutron scattering studies. Counterion solvation is compared with that measured in bulk solutions, and at a local level the cation-oxygen coordination is found to be remarkably similar in these two environments. However, for the monovalent ions the contribution to the first coordination shell from the clay surfaces increases with counterion radius. This gives rise to inner-sphere (surface) complexes in the case of potassium and caesium. In this context, the location of the negative clay surface charge (i.e. arising from octahedral or tetrahedral substitution) is also found to be of major importance. Divalent cations, such as calcium, eagerly solvate to form outer-sphere complexes. These complexes are able to pin adjacent clay layers together, and thereby prevent colloidal swelling. Confined water molecules form hydrogen bonds to each other and to the clays' surfaces. In this way their local environment relaxes to close to the bulk water structure within two molecular layers of the clay surface. Finally, we discuss the way in which the simple organic molecules methane, methanol and ethylene glycol behave in the interlayer region of hydrated clays. Quasi-elastic neutron scattering of isotopically labelled interlayer CH 3OD and (CH2OD)2 in deuterated clay allows us to measure the diffusion of the CH3- and CH2-groups in both clay and liquid environments. We find that in both the one-layer methanol solvates and the two-layer glycol solvates the diffusion of the most mobile organic molecules is close to that in the bulk solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteomics, the analysis of expressed proteins, has been an important developing area of research for the past two decades [Anderson, NG, Anderson, NL. Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 1996;17:443-53]. Advances in technology have led to a rapid increase in applications to a wide range of samples; from initial experiments using cell lines, more complex tissues and biological fluids are now being assessed to establish changes in protein expression. A primary aim of clinical proteomics is the identification of biomarkers for diagnosis and therapeutic intervention of disease, by comparing the proteomic profiles of control and disease, and differing physiological states. This expansion into clinical samples has not been without difficulties owing to the complexity and dynamic range in plasma and human tissues including tissue biopsies. The most widely used techniques for analysis of clinical samples are surface-enhanced laser desorption/ionisation mass spectrometry (SELDI-MS) and 2-dimensional gel electrophoresis (2-DE) coupled to matrix-assisted laser desorption ionisation [Person, MD, Monks, TJ, Lau, SS. An integrated approach to identifying chemically induced posttranslational modifications using comparative MALDI-MS and targeted HPLC-ESI-MS/MS. Chem. Res. Toxicol. 2003;16:598-608]-mass spectroscopy (MALDI-MS). This review aims to summarise the findings of studies that have used proteomic research methods to analyse samples from clinical studies and to assess the impact that proteomic techniques have had in assessing clinical samples. © 2004 The Canadian Society of Clinical Chemists. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since much knowledge is tacit, eliciting knowledge is a common bottleneck during the development of knowledge-based systems. Visual interactive simulation (VIS) has been proposed as a means for eliciting experts’ decision-making by getting them to interact with a visual simulation of the real system in which they work. In order to explore the effectiveness and efficiency of VIS based knowledge elicitation, an experiment has been carried out with decision-makers in a Ford Motor Company engine assembly plant. The model properties under investigation were the level of visual representation (2-dimensional, 2½-dimensional and 3-dimensional) and the model parameter settings (unadjusted and adjusted to represent more uncommon and extreme situations). The conclusion from the experiment is that using a 2-dimensional representation with adjusted parameter settings provides the better simulation-based means for eliciting knowledge, at least for the case modelled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the work described was to identify and synthesize a range of biodegradable hypercoiling or hydrophobically associating polymers to mimic natural apoproteins, such as those found in lung surfactant or plasma apolipoproteins. Stirred interfacial polymerization was used to synthesize potentially biodegradable aromatic polyamides (Mw of 12,000-26,000) based on L-Iysine, L-Iysine ethyl ester, L-ornithine and DL-diaminopropionic acid, by reaction with isophthaloyl chloride. A similar technique was used to synthesize aliphatic polyamides based on L-Iysine ethyl ester and either adipoyl chloride or glutaryl chloride resulting in the synthesis of poly(lysine ethyl ester adipamide) [PLETESA] or poly(lysine ethyl ester glutaramide) (Mw of 126,000 and 26,000, respectively). PLETESA was found to be soluble in both polar and non-polar solvents and the hydrophobic/hydrophilic balance could be modified by partial saponification (66-75%) of the ethyl ester side chains. Surface or interfacial tension/pH profiles were used to assess the conformation of both the poly(isophthalamides) and partially saponified PLETESA in aqueous solution. The results demonstrated that a loss of charge from the polymer was accompanied by an initial fall in surface activity, followed by a rise in activity, and ultimately, by polymer precipitation. These observations were explained by a collapse of the polymer chains into non-surface active intramolecular coils, followed by a transition to an amphipathic conformation, and finally to a collapsed hydrophobe. 2-Dimensional NMR analysis of polymer conformation in polar and non-polar solvents revealed intramolecular associations between the hydrophobic groups within partially saponified PLETESA. Unsaponified PLETESA appeared to form a coiled structure in polar solvents where the ethyl ester side chains were contained within the polymer coil. The implications of the secondary structure of PLETESA and potential biomedical applications are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the project is to enhance the already effective health-monitoring system (HUMS) for helicopters by analysing structural vibrations to recognise different flight conditions directly from sensor information. The goal of this paper is to develop a new method to select those sensors and frequency bands that are best for detecting changes in flight conditions. We projected frequency information to a 2-dimensional space in order to visualise flight-condition transitions using the Generative Topographic Mapping (GTM) and a variant which supports simultaneous feature selection. We created an objective measure of the separation between different flight conditions in the visualisation space by calculating the Kullback-Leibler (KL) divergence between Gaussian mixture models (GMMs) fitted to each class: the higher the KL-divergence, the better the interclass separation. To find the optimal combination of sensors, they were considered in pairs, triples and groups of four sensors. The sensor triples provided the best result in terms of KL-divergence. We also found that the use of a variational training algorithm for the GMMs gave more reliable results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A family of Cu/TiO2 catalysts was prepared using a refined sol–gel method, and tested in the photocatalytic reduction of CO2 by H2O to CH4 using a stirred batch, annular reactor. The resulting photoactivity was benchmarked against pure TiO2 nanoparticles (synthesised by an identical sol–gel route). CO2 photoreduction exhibited a strong volcano dependence on Cu loading, reflecting the transition from 2-dimensional CuOx nanostructures to 3-dimensional crystallites, with optimum CH4 production observed for 0.03 wt.% Cu/TiO2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS2) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS2 nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS2 and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS 2 /N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS2/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to produce a well-characterised electrospun polystyrene scaffold which could be used routinely for three-dimensional (3D) cell culture experimentation. A linear relationship (p<0.01p<0.01) between three principal process variables (applied voltage, working distance and polymer concentration) and fibre diameter was reliably established enabling a mathematical model to be developed to standardise the electrospinning process. Surface chemistry and bulk architecture were manipulated to increase wetting and handling characteristics, respectively. X-ray photoelectron spectroscopy (XPS) confirmed the presence of oxygen-containing groups after argon plasma treatment, resulting in a similar surface chemistry to treated tissue culture plastic. The bulk architecture of the scaffolds was characterised by scanning electron microscopy (SEM) to assess the alignment of both random and aligned electrospun fibres, which were calculated to be 0.15 and 0.66, respectively. This compared to 0.51 for collagen fibres associated with native tissue. Tensile strength and strain of approximately of 0.15 MPa and 2.5%, respectively, allowed the scaffolds to be routinely handled for tissue culture purposes. The efficiency of attachment of smooth muscle cells to electrospun scaffolds was assessed using a modified 3-[4,5-dimethyl(thiazol-2yl)-3,5-diphery] tetrazolium bromide assay and cell morphology was assessed by phalloidin-FITC staining of F-actin. Argon plasma treatment of electrospun polystyrene scaffold resulted in significantly increased cell attachment (p<0.05p<0.05). The alignment factors of the actin filaments were 0.19 and 0.74 for the random and aligned scaffold respectively, compared to 0.51 for the native tissue. The data suggests that electrospinning of polystyrene generates 3D scaffolds which complement polystyrene used in 2D cell culture systems.