2 resultados para MLE

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results concerning the application of the Good-Turing (GT) estimation method to the frequentist n-tuple system. We show that the Good-Turing method can, to a certain extent rectify the Zero Frequency Problem by providing, within a formal framework, improved estimates of small tallies. We also show that it leads to better tuple system performance than Maximum Likelihood estimation (MLE). However, preliminary experimental results suggest that replacing zero tallies with an arbitrary constant close to zero before MLE yields better performance than that of GT system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we discuss how discriminative training can be applied to the hidden vector state (HVS) model in different task domains. The HVS model is a discrete hidden Markov model (HMM) in which each HMM state represents the state of a push-down automaton with a finite stack size. In previous applications, maximum-likelihood estimation (MLE) is used to derive the parameters of the HVS model. However, MLE makes a number of assumptions and unfortunately some of these assumptions do not hold. Discriminative training, without making such assumptions, can improve the performance of the HVS model by discriminating the correct hypothesis from the competing hypotheses. Experiments have been conducted in two domains: the travel domain for the semantic parsing task using the DARPA Communicator data and the Air Travel Information Services (ATIS) data and the bioinformatics domain for the information extraction task using the GENIA corpus. The results demonstrate modest improvements of the performance of the HVS model using discriminative training. In the travel domain, discriminative training of the HVS model gives a relative error reduction rate of 31 percent in F-measure when compared with MLE on the DARPA Communicator data and 9 percent on the ATIS data. In the bioinformatics domain, a relative error reduction rate of 4 percent in F-measure is achieved on the GENIA corpus.