5 resultados para MINIMAX
em Aston University Research Archive
Resumo:
This paper contributes to extend the minimax disparity to determine the ordered weighted averaging (OWA) model based on linear programming. It introduces the minimax disparity approach between any distinct pairs of the weights and uses the duality of linear programming to prove the feasibility of the extended OWA operator weights model. The paper finishes with an open problem. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
For a submitted query to multiple search engines finding relevant results is an important task. This paper formulates the problem of aggregation and ranking of multiple search engines results in the form of a minimax linear programming model. Besides the novel application, this study detects the most relevant information among a return set of ranked lists of documents retrieved by distinct search engines. Furthermore, two numerical examples aree used to illustrate the usefulness of the proposed approach.
Resumo:
Determining the Ordered Weighted Averaging (OWA) operator weights is important in decision making applications. Several approaches have been proposed in the literature to obtain the associated weights. This paper provides an alternative disparity model to identify the OWA operator weights. The proposed mathematical model extends the existing disparity approaches by minimizing the sum of the deviation between two distinct OWA weights. The proposed disparity model can be used for a preference ranking aggregation. A numerical example in preference ranking and an application in search engines prove the usefulness of the generated OWA weights.
Resumo:
Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.
Resumo:
Incorporating further information into the ordered weighted averaging (OWA) operator weights is investigated in this paper. We first prove that for a constant orness the minimax disparity model [13] has unique optimal solution while the modified minimax disparity model [16] has alternative optimal OWA weights. Multiple optimal solutions in modified minimax disparity model provide us opportunity to define a parametric aggregation OWA which gives flexibility to decision makers in the process of aggregation and selecting the best alternative. Finally, the usefulness of the proposed parametric aggregation method is illustrated with an application in metasearch engine. © 2011 Elsevier Inc. All rights reserved.