4 resultados para MINEQL 4.5
em Aston University Research Archive
Resumo:
Many important natural products contain the furan-2(5H)-one structure. The structure of this molecule lends itself to manipulation using combinatorial techniques due to the presence of more than one site for the attachment of different suhstituents. By developing different reaction schemes at the three sites available for attachment on the furan-2(5H)-one scaffold, combinatorial chemistry techniques can be employed to assemble libraries of novel furan 2(5H)-ones. These libraries can then be entered into various biological screening programmes. This approach will enable a vast diversity or compounds to be examined, in the hope or finding new biologically active Iead structures. The work in this thesis has investigated the potential that combinatorial chemistry has in the quest for new biologically active lead structures based on the furan-2(5H)-one structure. Different reactions were investigated with respect to their suitability for inclusion in a library. Once sets of reactions at the various sites had been established, the viability of these reactions in the assembly of combinatorial libraries was investigated. Purification methods were developed, and the purified products entered into suitable biological screening tests. Results from some of these tests were optimised using structure activity relationships, and the resulting products re-screened. The screening tests performed were for anticancer and antimicrobial activity, cholecystokinin (CCK-B) antagonism and anti-inflammatory activity (in the quest for novel cyclo-oxygenase (COX-2) selective non-steroidal anti-inflammatory drugs). It has been shown that many reactions undergone by the furan-2(5H)-one structure are suitable for the assembly of a combinatorial library. Investigation into the assembly of different libraries has been carried out with initial screening results included. From this work, further investigation into combinatorial library assembly and structure activity relationships of screened reaction products can be undertaken.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
In the ciliate Paramecium, a variety of well characterized processes are regulated by Ca2+, e.g. exocytosis, endocytosis and ciliary beat. Therefore, among protozoa, Paramecium is considered a model organism for Ca2+ signaling, although the molecular identity of the channels responsible for the Ca2+ signals remains largely unknown. We have cloned - for the first time in a protozoan - the full sequence of the gene encoding a putative inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3) receptor from Paramecium tetraurelia cells showing molecular characteristics of higher eukaryotic cells. The homologously expressed Ins(1,4,5)P3-binding domain binds [3H]Ins(1,4,5)P3, whereas antibodies unexpectedly localize this protein to the osmoregulatory system. The level of Ins(1,4,5)P3-receptor expression was reduced, as shown on a transcriptional level and by immuno-staining, by decreasing the concentration of extracellular Ca2+ (Paramecium cells rapidly adjust their Ca2+ level to that in the outside medium). Fluorochromes reveal spontaneous fluctuations in cytosolic Ca2+ levels along the osmoregulatory system and these signals change upon activation of caged Ins(1,4,5)P3. Considering the ongoing expulsion of substantial amounts of Ca2+ by the osmoregulatory system, we propose here that Ins(1,4,5)P3 receptors serve a new function, i.e. a latent, graded reflux of Ca2+ to fine-tune [Ca2+] homeostasis.
Resumo:
We have studied the hypothesis that 6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) is neurotoxic. Salsolinol induced a significant time and dose related inhibition of 3[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; thiazoyl blue (MTT) reduction, and increased lactate dehydrogenase release (LDH) release from human SH-SY5Y neuroblastoma cells, at concentrations within the range of 1-methyl-4-phenylpyridinium (MPP+) cytotoxicity, in vitro. Cytotoxicity was not inhibited by the addition of antioxidants, monoamine oxidase inhibitors or imipramine. In confluent monolayers, salsolinol stimulated catecholamine uptake with EC50 values of 17 muM and 11 muM, for noradrenaline and dopamine, respectively. Conversely, at concentrations above 100 muM, salsolinol inhibited the uptake of noradrenaline and dopamine, with IC50 values of 411 muM and 379 muM, respectively. The inhibition of catecholamine uptake corresponded to the increase displacement of [3H]nisoxetine from the uptake 1 site by salsolinol, as the Ki (353 muM) for displacement was similar to the IC50 (411 and 379 muM) for uptake. Salsolinol stimulated catecholamine uptake does not involve the uptake recognition site, or elevation of cAMP, cGMP, or inhibition of protein kinase C. Salsolinol also inhibited both carbachol (1 mM) and K+ (100 mM, Na+ adjusted) evoked released of noradrenaline from SH-SY5Y cells, with IC50 values of 500 muM and 120 muM, respectively. In conclusion, salsolinol appears to be cytotoxic to SH-SY5Y cells, via a mechanism that does not require uptake 1, bioactivation by monoamine oxidase, or membrane based free radical damage. The effects of salsolinol on catecholamine uptake, and the mechanism of toxicity require further investigation.