7 resultados para MILD HEAD-INJURY

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the earliest descriptions, senile plaques (SP) and neurofibrillary tangles (NFT) have been regarded as the pathological hallmarks of Alzheimer's disease (AD). Consequently, studies of the morphology, distribution, and molecular composition of SP and NFT have played an important role in developing theories as to the pathogenesis of AD; the most important being the 'Amyloid Cascade Hypothesis (ACH)'. Nevertheless, the significance of SP and NFT to the pathogenesis of AD remains controversial. This review examines three questions: 1) is there a relationship between the lesions and the degree of clinical dementia, 2) is the pathogenesis of the NFT linked to that of the SP, and 3) what is the relationship of SP and NFT to the pathogenesis of AD? These questions are discussed with reference to the morphology and molecular composition of SP and NFT, the effects of gene mutations, studies of head injury patients, experimental studies involving brain lesions and transgenes, and the degeneration of specific anatomical pathways. It was concluded that SP and NFT are not closely related to the developing dementia in AD, arise as relatively independent lesions, and may be the products of a degenerative process rather than being their cause.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pathological lesions in the form of extracellular protein deposits, intracellular inclusions and changes in cell morphology occur in the brain in the majority of neurodegenerative disorders. Studies of the presence, distribution, and molecular determinants of these lesions are often used to define individual disorders and to establish the mechanisms of lesion pathogenesis. In most disorders, however, the relationship between the appearance of a lesion and the underlying disease process is unclear. Two hypotheses are proposed which could explain this relationship: (i) lesions are the direct cause of the observed neurodegeneration ('causal' hypothesis); and (ii) lesions are a reaction to neurodegeneration ('reaction' hypothesis). These hypotheses are considered in relation to studies of the morphology and molecular determinants of lesions, the effects of gene mutations, degeneration induced by head injury, the effects of experimentally induced brain lesions, transgenic studies and the degeneration of anatomical pathways. The balance of evidence suggests that in many disorders, the appearance of the pathological lesions is a reaction to degenerative processes rather than being their cause. Such a conclusion has implications both for the classification of neurodegenerative disorders and for studies of disease pathogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paediatric intensive care is an expanding specialty that has been shown to improve the quality of care provided to critically ill children. An important aspect of the management of critically ill children includes the provision of effective sedation to reduce stress and anxiety during their stay in intensive care. However, to achieve effective and safe sedation in these children, is recognised as a challenge that is not without risk. Often children receive too much or too little sedation resulting in over sedation or under sedation respectively. These problems have arisen owing to a lack of information regarding altered pharmacokinetics and pharmacodynamics of medicines administered to critically ill children. In addition there are few validated sedation scoring systems in practice with which to monitor level of sedation and titrate medication appropriately. This study consisted of two stages. Stage 1 investigated the reproducibility and practicality of two observational sedation assessment scales for use in critically ill children. The two scales were different in design, the first being simple in design requiring a single assessment of the patient. The second was more complex in design requiring assessment of five patient parameters to obtain an overall sedation score. Both scales were found to achieve good reproducibility (kappa values 0.50 and 0.62 respectively). Practicality of each sedation scale was undertaken by obtaining nursing staff opinion about both scales using questionnaire and interview technique. It was established that nursing staff preferred the second, more complex sedation scale mainly because it was perceived to give a more accurate assessment of level of sedation and anxiety rather than merely level of sedation. Stage 2 investigated the pharmacokinetics and pharmacodynamics of midazolam in critically ill children. 52 children, aged between 0 and 18 years were recruited to the study and 303 blood samples taken to analyse midazolam and its metabolites, I-hydroxyrnidazolam (I-OR) and 4-hydroxymidazolam (4-0H). Analysis of plasma was undertaken using high performance liquid chromatography. A significant correlation was found between midazolam plasma concentration and sedative effect (r=0.598, p=O.OI). It was found that a midazolam plasma concentration of 223ng/ml (±31.9) achieved a satisfactory level of sedation. Only a poor correlation was found between dose of midazolam and plasma concentration of midazolam. Similarly only a poor correlation was found between sedative effect and dose of midazolam. Clearance of midazolam was found to be 6.3mllkglmin (±0.36), which is lower than that reported in healthy children (9.Il-13.3mllkg/min). Age related differences in midazolam clearance were observed in the study. Neonates produced the lowest clearance values (l.63mllkg/min), compared to children aged 1 to 12 months (8.52mllkg/min) who achieved the highest clearance values. Clearance was found to decrease after the age of 12 months to values of 5.34mllkglmin in children aged 7 years and above. Patients with renal (n=5) and liver impairment (n~4) were found to have reduced midazolam clearance (1.37 and 0.74ml/kg/min respectively). Plasma concentrations of I-OH and 4-0H ranged from 0-5 1 89nglml and 0-27 Inglml respectively. All children were found to be capable of producing both metabolites irrespective of age, although no trend was established between age and extent of production of either metabolite. Disease state was found to affect production of l-OH. Patients with renal impairment (n=5) produced the lowest I-OH midazolam plasma ratio (0.059) compared to patients with head injury (0.858). Patients with severe liver impairment were found to be capable of manufacturing both metabolites despite having a severely damaged liver.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The most influential theory to explain the pathogenesis of Alzheimer's disease (AD) has been the "Amyloid Cascade Hypothesis" (ACH) first formulated in 1992. The ACH proposes that the deposition of ß-amyloid (Aß) is the initial pathological event in AD leading to the formation of senile plaques (SPs) and then to neurofibrillary tangles (NFTs) death of neurons, and ultimately dementia. This paper examines two questions regarding the ACH: (1) is there a relationship between the pathogenesis of SPs and NFTs, and (2) what is the relationship of these lesions to disease pathogenesis? These questions are examined in relation to studies of the morphology and molecular determinants of SPs and NFTs, the effects of gene mutation, degeneration induced by head injury, the effects of experimentally induced brain lesions, transgenic studies, and the degeneration of anatomical pathways. It was concluded that SPs and NFTs develop independently and may be the products rather than the causes of neurodegeneration in AD. A modification to the ACH is proposed which may better explain the pathogenesis of AD, especially of late-onset cases of the disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the earliest descriptions of Alzheimer's disease (AD), many theories have been advanced as to its cause. These include: (1) exacerbation of aging, (2) degeneration of anatomical pathways, including the cholinergic and cortico-cortical pathways, (3) an environmental factor such as exposure to aluminium, head injury, or malnutrition, (4) genetic factors including mutations of amyloid precursor protein (APP) and presenilin (PSEN) genes and allelic variation in apolipoprotein E (Apo E), (5) mitochondrial dysfunction, (6) a compromised blood brain barrier, (7) immune system dysfunction, and (8) infectious agents. This review discusses the evidence for and against each of these theories and concludes that AD is a multifactorial disorder in which genetic and environmental risk factors interact to increase the rate of normal aging ('allostatic load'). The consequent degeneration of neurons and blood vessels results in the formation of abnormally aggregated 'reactive' proteins such as ß-amyloid (Aß) and tau. Gene mutations influence the outcome of age-related neuronal degeneration to cause early onset familial AD (EO-FAD). Where gene mutations are absent and a combination of risk factors present, Aß and tau only slowly accumulate not overwhelming cellular protection systems until later in life causing late-onset sporadic AD (LO-SAD). Aß and tau spread through the brain via cell to cell transfer along anatomical pathways, variation in the pathways of spread leading to the disease heterogeneity characteristic of AD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large number of risk factors have been associated with Alzheimer’s disease (AD). This article discusses the validity of the major risk factors that have been identified including age, genetics, exposure to aluminium, head injury, malnutrition and diet, mitochondrial dysfunction, vascular disease, immune system dysfunction, and infection. Rare forms of early-onset familial AD (FAD) are strongly linked to the presence of specific gene mutations, viz. mutations in amyloid precursor protein (APP) and presenilin (PSEN1/2) genes. By contrast, late-onset sporadic AD (SAD) is a multifactorial disorder in which age-related changes, genetic risk factors, such as allelic variation in apolipoprotein E (Apo E) gene, vascular disease, head injury and risk factors associated with diet, the immune system, mitochondrial function, and infection may all be involved. Life-style changes that may reduce the effect of these risk factors and therefore, the risk of AD are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large number of possible risk factors have been associated with Alzheimer'sdisease (AD).This chapter discusses the validity of the major risk factors that have been identifiedincluding age, genetics, exposure to aluminum, head injury, malnutrition and diet,mitochondrial dysfunction, vascular disease, immune system dysfunction, and infectionand proposes a hypothesis to explain how these various risk factors may cause ADpathology.Rare forms of early-onset familial AD (FAD) are strongly linked to the presence ofspecific gene mutations, viz. mutations in amyloid precursor protein (APP) andpresenilin (PSEN1/2) genes. By contrast, late-onset sporadic AD (SAD) is amultifactorial disorder in which age-related changes, genetic risk factors, such as allelicvariation in apolipoprotein E (Apo E) gene, vascular disease, head injury and risk factorsassociated with diet, immune system, mitochondrial function, and infection may all beinvolved.These risk factors interact to increase the rate of normal aging (=allostatic load')which over a lifetime results in degeneration of neurons and blood vessels and as aconsequence, the formation of abnormally aggregated =reactive' proteins such as ß-amyloid (Aß) and tau leading to the development of senile plaques (SP) andneurofibrillary tangles (NFT) respectively. Life-style changes that may reduce theallostatic load and therefore, the risk of dementia are discussed.