7 resultados para MEV RANGE 01-10

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spreading time of liquid binder droplet on the surface a primary particle is analyzed for Fluidized Bed Melt Granulation (FBMG). As discussed in the first paper of this series (Chua et al., in press) the droplet spreading rate has been identified as one of the important parameters affecting the probability of particles aggregation in FBMG. In this paper, the binder droplet spreading time has been estimated using Computational Fluid Dynamic modeling (CFD) based on Volume of Fluid approach (VOF). A simplified analytical solution has been developed and tested to explore its validity for predicting the spreading time. For the purpose of models validation, the droplet spreading evolution was recorded using a high speed video camera. Based on the validated model, a generalized correlative equation for binder spreading time is proposed. For the operating conditions considered here, the spreading time for Polyethylene Glycol (PEG1500) binder was found to fall within the range of 10-2 to 10-5 s. The study also included a number of other common binders used in FBMG. The results obtained here will be further used in paper III, where the binder solidification rate is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate surface plasmon resonance (SPR) fiber devices based upon ultraviolet inscription of a grating-type structure into both single-layered and multilayered thin films deposited on the flat side of a lapped D-shaped fiber. The single-layered devices were fabricated from germanium, while the multilayered ones comprised layers of germanium, silica, and silver. Some of the devices operated in air with high coupling efficiency in excess of 40 dB and an estimated index sensitivity of Delta lambda/Delta n = 90 mn from 1 to 1.15 index range, while others provided an index sensitivity of Delta lambda/Delta n = 6790 mn for refractive indices from 1.33 to 1.37. (C) 2009 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary objective of this work is to relate the biomass fuel quality to fast pyrolysis-oil quality in order to identify key biomass traits which affect pyrolysis-oil stability. During storage the pyrolysis-oil becomes more viscous due to chemical and physical changes, as reactions and volatile losses occur due to aging. The reason for oil instability begins within the pyrolysis reactor during pyrolysis in which the biomass is rapidly heated in the absence of oxygen, producing free radical volatiles which are then quickly condensed to form the oil. The products formed do not reach thermodynamic equilibrium and in tum the products react with each other to try to achieve product stability. The first aim of this research was to develop and validate a rapid screening method for determining biomass lignin content in comparison to traditional, time consuming and hence costly wet chemical methods such as Klason. Lolium and Festuca grasses were selected to validate the screening method, as these grass genotypes exhibit a low range of Klason /Acid Digestible Fibre lignin contents. The screening methodology was based on the relationship between the lignin derived products from pyrolysis and the lignin content as determined by wet chemistry. The second aim of the research was to determine whether metals have an affect on fast pyrolysis products, and if any clear relationships can be deduced to aid research in feedstock selection for fast pyrolysis processing. It was found that alkali metals, particularly Na and K influence the rate and yield of degradation as well the char content. Pre-washing biomass with water can remove 70% of the total metals, and improve the pyrolysis product characteristics by increasing the organic yield, the temperature in which maximum liquid yield occurs and the proportion of higher molecular weight compounds within the pyrolysis-oil. The third aim identified these feedstock traits and relates them to the pyrolysis-oil quality and stability. It was found that the mineral matter was a key determinant on pyrolysis-oil yield compared to the proportion of lignin. However the higher molecular weight compounds present in the pyrolysis-oil are due to the lignin, and can cause instability within the pyrolysis-oil. The final aim was to investigate if energy crops can be enhanced by agronomical practices to produce a biomass quality which is attractive to the biomass conversion community, as well as giving a good yield to the farmers. It was found that the nitrogen/potassium chloride fertiliser treatments enhances Miscanthus qualities, by producing low ash, high volatiles yields with acceptable yields for farmers. The progress of senescence was measured in terms of biomass characteristics and fast pyrolysis product characteristics. The results obtained from this research are in strong agreement with published literature, and provides new information on quality traits for biomass which affects pyrolysis and pyrolysis-oils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluidized bed spray granulators (FBMG) are widely used in the process industry for particle size growth; a desirable feature in many products, such as granulated food and medical tablets. In this paper, the first in a series of four discussing the rate of various microscopic events occurring in FBMG, theoretical analysis coupled with CFD simulations have been used to predict granule–granule and droplet–granule collision time scales. The granule–granule collision time scale was derived from principles of kinetic theory of granular flow (KTGF). For the droplet–granule collisions, two limiting models were derived; one is for the case of fast droplet velocity, where the granule velocity is considerable lower than that of the droplet (ballistic model) and another for the case where the droplet is traveling with a velocity similar to the velocity of the granules. The hydrodynamic parameters used in the solution of the above models were obtained from the CFD predictions for a typical spray fluidized bed system. The granule–granule collision rate within an identified spray zone was found to fall approximately within the range of 10-2–10-3 s, while the droplet–granule collision was found to be much faster, however, slowing rapidly (exponentially) when moving away from the spray nozzle tip. Such information, together with the time scale analysis of droplet solidification and spreading, discussed in part II and III of this study, are useful for probability analysis of the various event occurring during a granulation process, which then lead to be better qualitative and, in part IV, quantitative prediction of the aggregation rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Algae are a new potential biomass for energy production but there is limited information on their pyrolysis and kinetics. The main aim of this thesis is to investigate the pyrolytic behaviour and kinetics of Chlorella vulgaris, a green microalga. Under pyrolysis conditions, these microalgae show their comparable capabilities to terrestrial biomass for energy and chemicals production. Also, the evidence from a preliminary pyrolysis by the intermediate pilot-scale reactor supports the applicability of these microalgae in the existing pyrolysis reactor. Thermal decomposition of Chlorella vulgaris occurs in a wide range of temperature (200-550°C) with multi-step reactions. To evaluate the kinetic parameters of their pyrolysis process, two approaches which are isothermal and non-isothermal experiments are applied in this work. New developed Pyrolysis-Mass Spectrometry (Py-MS) technique has the potential for isothermal measurements with a short run time and small sample size requirement. The equipment and procedure are assessed by the kinetic evaluation of thermal decomposition of polyethylene and lignocellulosic derived materials (cellulose, hemicellulose, and lignin). In the case of non-isothermal experiment, Thermogravimetry- Mass Spectrometry (TG-MS) technique is used in this work. Evolved gas analysis provides the information on the evolution of volatiles and these data lead to a multi-component model. Triplet kinetic values (apparent activation energy, pre-exponential factor, and apparent reaction order) from isothermal experiment are 57 (kJ/mol), 5.32 (logA, min-1), 1.21-1.45; 9 (kJ/mol), 1.75 (logA, min-1), 1.45 and 40 (kJ/mol), 3.88 (logA, min-1), 1.45- 1.15 for low, middle and high temperature region, respectively. The kinetic parameters from non-isothermal experiment are varied depending on the different fractions in algal biomass when the range of apparent activation energies are 73-207 (kJ/mol); pre-exponential factor are 5-16 (logA, min-1); and apparent reaction orders are 1.32–2.00. The kinetic procedures reported in this thesis are able to be applied to other kinds of biomass and algae for future works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. The purpose of this study was to evaluate the potential of the portable Grand Seiko FR-5000 autorefractor to allow objective, continuous, open-field measurement of accommodation and pupil size for the investigation of the visual response to real-world environments and changes in the optical components of the eye. METHODS. The FR-5000 projects a pair of infrared horizontal and vertical lines on either side of fixation, analyzing the separation of the bars in the reflected image. The measurement bars were turned on permanently and the video output of the FR-5000 fed into a PC for real-time analysis. The calibration between infrared bar separation and the refractive error was assessed over a range of 10.0 D with a model eye. Tolerance to longitudinal instrument head shift was investigated over a ±15 mm range and to eye alignment away from the visual axis over eccentricities up to 25.0°. The minimum pupil size for measurement was determined with a model eye. RESULTS. The separation of the measurement bars changed linearly (r = 0.99), allowing continuous online analysis of the refractive state at 60 Hz temporal and approximately 0.01 D system resolution with pupils >2 mm. The pupil edge could be analyzed on the diagonal axes at the same rate with a system resolution of approximately 0.05 mm. The measurement of accommodation and pupil size were affected by eccentricity of viewing and instrument focusing inaccuracies. CONCLUSIONS. The small size of the instrument together with its resolution and temporal properties and ability to measure through a 2 mm pupil make it useful for the measurement of dynamic accommodation and pupil responses in confined environments, although good eye alignment is important. Copyright © 2006 American Academy of Optometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have theoretically and experimentally designed and demonstrated an all-fiber polarization interference filter (AFPIF), which is formed by a polarization-maintaining (PM) fiber cavity structure utilizing two 45° tilted fiber gratings (45°-TFGs) inscribed by UV laser on the PM fiber. Such a filter could generate modulated transmission of linear polarization status. It has been revealed that the modulation depth of the transmission depends on the coupling angle between the 45°-TFGs and the PM fiber cavity. When the two 45°-TFGs in PM fiber are oriented at 45° to the principal axis of the PM fiber cavity, the maximum modulation depth is achievable. Due to the thermal effect on birefringence of the PM fiber, the AFPIF can be tuned over a broad wavelength range just by simple thermal tuning of the cavity. The experiment results show that the temperature tuning sensitivity is proportional to the length ratio of the PM fiber cavity under heating. For 18 and 40 cm long cavities with 6 cm part under heating, the thermal tuning sensitivities are 0.616 and 0.31 nm/° C, respectively, which are almost two orders of magnitude higher than normal fiber Bragg gratings. © 1983-2012 IEEE.