8 resultados para MEV LI-6 IONS
em Aston University Research Archive
Resumo:
We present an ESR study at excitation frequencies of 9.4 GHz and 222.4 GHz of powders and single crystals of a Prussian Blue analogue (PBA), RbMn[Fe(CN)6]*H2O in which Fe and Mn undergoes a charge transfer transition between 175 and 300 K. The ESR of PBA powders, also reported by Pregelj et al. (JMMM, 316, E680 (2007)) is assigned to cubic magnetic clusters of Mn2+ ions surrounding Fe(CN)6 vacancies. The clusters are well isolated from the bulk and are superparamagnetic below 50 K. In single crystals various defects with lower symmetry are also observed. Spin-lattice relaxation broadens the bulk ESR beyond observability. This strong spin relaxation is unexpected above the charge transfer transition and is attributed to a mixing of the Mn3+ - Fe2+ state into the prevalent Mn2+ - Fe3+ state.
Resumo:
A series of Li-promoted CaO catalysts with Li loadings in the range 0.26–4.0 wt% have been prepared which are effective in the transesterification of glyceryl tributyrate and methanol to methyl butanoate. A Li content of 1.23 wt% provides the optimum activity towards methyl butanoate formation. Li doping increases the base strength of CaO, and XPS and DRIFTS measurements reveal that the optimum loading correlates with the formation of an electron deficient surface Li+ species and associated –OH species at defect sites on the support. High Li loadings result in bulk LiNO3 formation and a drop in surface area and corresponding catalytic activity.
The role of zinc in the anti-tumour and anti-cachectic activity of D-myo-inositol 1,2,6-triphosphate
Resumo:
Background: D-myo-inositol-1,2,6-triphosphate (a-trinositol, AT) is a polyanionic molecule capable of chelating divalent metal ions with anti-tumour and anti-cachectic activity in a murine model. Methods: To investigate the role of zinc in this process, mice bearing cachexia-inducing MAC16 tumour were treated with AT, with or without concomitant administration of ZnSO4. Results: At a dose of 40mgkg-1, AT effectively attenuated both weight loss and growth of the MAC16 tumour, and both effects were attenuated by co-administration of Zn2+. The concentration of zinc in gastrocnemius muscle increased with increasing weight loss, whereas administration of AT decreased the levels of zinc in plasma, skeletal muscle and tumour, which were restored back to control values after administration of ZnSO4. Conclusion: These results suggest that zinc is important in both tumour growth and cachexia in this animal model.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The morphology, chemical composition, and mechanical properties in the surface region of α-irradiated polytetrafluoroethylene (PTFE) have been examined and compared to unirradiated specimens. Samples were irradiated with 5.5 MeV 4He2+ ions from a tandem accelerator to doses between 1 × 106 and 5 × 1010 Rad. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS), using a 20 keV C60+ source, was employed to probe chemical changes as a function of a dose. Chemical images and high resolution spectra were collected and analyzed to reveal the effects of a particle radiation on the chemical structure. Residual gas analysis (RGA) was utilized to monitor the evolution of volatile species during vacuum irradiation of the samples. Scanning electron microscopy (SEM) was used to observe the morphological variation of samples with increasing a particle dose, and nanoindentation was engaged to determine the hardness and elastic modulus as a function of a dose. The data show that PTFE nominally retains its innate chemical structure and morphology at a doses <109 Rad. At α doses ≥109 Rad the polymer matrix experiences increased chemical degradation and morphological roughening which are accompanied by increased hardness and declining elasticity. At α doses >1010 Rad the polymer matrix suffers severe chemical degradation and material loss. Chemical degradation is observed in ToF-SIMS by detection of ions that are indicative of fragmentation, unsaturation, and functionalization of molecules in the PTFE matrix. The mass spectra also expose the subtle trends of crosslinking within the α-irradiated polymer matrix. ToF-SIMS images support the assertion that chemical degradation is the result of a particle irradiation and show morphological roughening of the sample with increased a dose. High resolution SEM images more clearly illustrate the morphological roughening and the mass loss that accompanies high doses of a particles. RGA confirms the supposition that the outcome of chemical degradation in the PTFE matrix with continuing irradiation is evolution of volatile species resulting in morphological roughening and mass loss. Finally, we reveal and discuss relationships between chemical structure and mechanical properties such as hardness and elastic modulus.
Resumo:
The relative distribution of rare-earth ions R3+ (Dy3+ or Ho3+) in the phosphate glass RAl0.30P3.05O9.62 was measured by employing the method of isomorphic substitution in neutron diffraction. It is found that 7.9(7) R-R nearest neighbors reside at 5.62(6) Angstrom in a network made from interlinked PO4 tetrahedra. Provided that the role of Al is explicitly considered, a self-consistent account of the local matrix atom correlations can be developed in which there are 1.68(9) bridging and 2.32(9) terminal oxygen atoms per phosphorus.
Resumo:
d-Myo-inositol 1,2,6-triphosphate (alpha trinositol, AT) has been shown to attenuate muscle atrophy in a murine cachexia model through an increase in protein synthesis and a decrease in degradation. The mechanism of this effect has been investigated in murine myotubes using a range of catabolic stimuli, including proteolysis-inducing factor (PIF), angiotensin II (Ang II), lipopolysaccharide, and tumor necrosis factor-α/interferon-γ. At a concentration of 100 μM AT was found to attenuate both the induction of protein degradation and depression of protein synthesis in response to all stimuli. The effect on protein degradation was accompanied by attenuation of the increased expression and activity of the ubiquitin-proteasome pathway. This suggests that AT inhibits a signalling step common to all four agents. This target has been shown to be activation (autophosphorylation) of the dsRNA-dependent protein kinase (PKR) and the subsequent phosphorylation of eukaryotic initiation factor 2 on the α-subunit, together with downstream signalling pathways leading to protein degradation. AT also inhibited activation of caspase-3/-8, which is thought to lead to activation of PKR. The mechanism of this effect may be related to the ability of AT to chelate divalent metal ions, since the attenuation of the increased activity of the ubiquitin-proteasome pathway by PIF and Ang II, as well as the depression of protein synthesis by PIF, were reversed by increasing concentrations of Zn2+. The ability of AT to attenuate muscle atrophy by a range of stimuli suggests that it may be effective in several catabolic conditions. © 2009 Elsevier Inc. All rights reserved.