7 resultados para MEDIATED GLUCOSE DISPOSAL

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Type 2 diabetes is an insidious disorder, with micro and/or macrovascular and nervous damage occurring in many patients before diagnosis. This damage is caused by hyperglycaemia and the diverse effects of insulin resistance. Obesity, in particular central obesity, is a strong pre-disposing factor for type 2 diabetes. Skeletal muscle is the main site of insulin-stimulated glucose disposal and appears to be the first organ that becomes insulin resistant in the diabetic state, with later involvement of adipose tissue and the liver. This study has investigated the use of novel agents to ameliorate insulin-resistance in skeletal muscle as a means of identifying intervention sites against insulin resistance and of improving glucose uptake and metabolism by skeletal muscle. Glucose uptake was measured in vitro by cultured L6 myocytes and isolated muscles from normal and obese diabetic ob/ob mice, using either the tritiated non-metabolised glucose analogue 2-deoxy-D-glucose or by glucose disposal. Agents studied included lipoic acid, isoferulic acid, bradykinin, lipid mobilising factor (provisionally synonymous with Zinca2 glycoprotein) and the trace elements lithium, selenium and chromium. The putative role of TNFa in insulin resistance was also investigated. Lipoic acid improved insulin-stimulated glucose uptake in normal and insulin resistance murine muscles, as well as cultured myocytes. Isoferulic acid, bradykinin and LMF also produced a transient increase in glucose uptake in cultured myocytes. Physiological concentrations of TNFa were found to cause insulin resistance in cultured, but no in excised murine muscles. The effect of the M2 metabolite of the satiety-inducing agent sibutramine on lipolysis in excised murine and human adipocytes was also investigated. M2 increased lipolysis from normal lean and obese ob/ob mouse adipocytes. Arguably the most important observation was that M2 also increased the lipolytic rate in adipocytes from catecholamine resistant obese subjects. The studies reported in this thesis indicate that a diversity of agents can improve glucose uptake and ameliorate insulin resistance. It is likely that these agents are acting via different pathways. This thesis has also shown that M2 can induce lipolysis in both rodent and human adipocytes. M2 hence has potential to directly reduce adiposity, in addition to well documented effects via the central nervous system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study investigated the effect of the two most abundant FFA in plasma – palmitate and oleate – on insulin sensitivity and vascular function (monocyte phenotype and adhesion to endothelium) using in vitro cell culture models and Wistar rats. Palmitate at 300µM for 6h induced insulin resistance in THP-1 monocytes and L6 monocytes. The ceramide synthesis pathway partly accounted for the palmitate-induced insulin resistance in THP-1 monocytes but not for L6 myotubes. Oleate treatment did not induce insulin resistance in either cell type and co-incubation with oleate protected cells from palmitate-induced insulin resistance. Palmitate at 300µN for 24h significantly increased cell surface CD11b and CD36 expression in U937 monocytes. The increase in CD11b and CD36 expression was effectively inhibited by Fumonisin B1, an inhibitor of ceramide synthesis. Oleate treatment did not show any effect on CD11b and CD36 expression and co-incubation with oleate antagonised the effect of palmitate on CD11b and CD36 expression in U937 monocytes. The increase in CD11b expression did not affect U937 monocyte adhesion to ICAM-1. Treating Wistar rats with palmitate for 6h caused a transient delay in glucose disposal and an increase in adhesion of U937 monocytes to the aortic endothelium, particularly at bifurcations. In conclusion, the present study demonstrates that the saturated free fatty acid palmitate induces insulin resistance and a pro-atherogenic phenotype for monocytes, whereas the unsaturated free fatty acid oleate does not. In vivo studies also confirmed that palmitate induces insulin resistance and an increase in monocyte adhesion to aorta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zinc-a2-glycoprotein (ZAG) is an adipokine with the potential as a therapeutic agent in the treatment of obesity and type 2 diabetes. In this study we show that human ZAG, which is a 41-kDa protein, when administered to ob/ob mice at 50 µg/d-1 orally in the drinking water produced a progressive loss of body weight (5 g after 8 d treatment), together with a 0.5 C increase in rectal temperature and a 40% reduction in urinary excretion of glucose. There was also a 33% reduction in the area under the curve during an oral glucose tolerance test and an increased sensitivity to insulin. These results were similar to those after iv administration of ZAG. However, tryptic digestion was shown to inactivate ZAG. There was no evidence of human ZAG in the serum but a 2-fold elevation of murine ZAG, which was also observed in target tissues such as white adipose tissue. To determine whether the effect was due to interaction of the human ZAG with the ß-adrenergic (ß-AR) in the gastrointestinal tract before digestion, ZAG was coadministered to ob/ob mice together with propanolol (40 mg/kg-1), a nonspecific ß-AR antagonist. The effect of ZAG on body weight, rectal temperature, urinary glucose excretion, improvement in glucose disposal, and increased insulin sensitivity were attenuated by propanolol, as was the increase in murine ZAG in the serum. These results suggest that oral administration of ZAG increases serum levels through interaction with a ß-AR in the upper gastrointestinal tract, and gene expression studies showed this to be in the esophagus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metformin is the only biguanide antihyperglycemic agent used in the treatment of type 2 (non-insulin dependent) diabetes mellitus. It counters insulin resistance partly by increased insulin action (so-called insulin sensitizing effects) and partly via actions that are not directly insulin dependent. Metformin reduces hepatic glucose output by suppression of gluconeogenesis and glycogenolysis. In skeletal muscle, metformin increases insulin-mediated glucose uptake and glycogen storage. Other actions of metformin that contribute to its blood glucose-lowering effect are reduced fatty acid oxidation and increased glucose turnover, the latter occurring particularly in the splanchnic bed .... © 2007 Copyright © 2007 Elsevier Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To compare the effects of biliopancreatic diversion (BPD) and laparoscopic gastric banding (LAGB) on insulin sensitivity and secretion with the effects of laparoscopic gastric plication (P). Methods: A total of 52 obese women (age 30-66 years) suffering from type 2 diabetes mellitus (T2DM) were prospectively recruited into three study groups: 16 BPD; 16 LAGB, and 20 P. Euglycemic clamps and mixed meal tolerance tests were performed before, at 1 month and at 6 months after bariatric surgery. Beta cell function derived from the meal test parameters was evaluated using mathematical modeling. Results: Glucose disposal per kilogram of fat free mass (a marker of peripheral insulin sensitivity) increased significantly in all groups, especially after 1 month. Basal insulin secretion decreased significantly after all three types of operations, with the most marked decrease after BPD compared with P and LAGB. Total insulin secretion decreased significantly only following the BPD. Beta cell glucose sensitivity did not change significantly post-surgery in any of the study groups. Conclusion: We documented similar improvement in insulin sensitivity in obese T2DM women after all three study operations during the 6-month postoperative follow-up. Notably, only BPD led to decreased demand on beta cells (decreased integrated insulin secretion), but without increasing the beta cell glucose sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic systemic immunosuppression in cell replacement therapy restricts its clinical application. This study sought to explore the potential of cell-based immune modulation as an alternative to immunosuppressive drug therapy in the context of pancreatic islet transplantation. Human amniotic epithelial cells (AEC) possess innate anti-inflammatory and immunosuppressive properties that were utilized to create localized immune privilege in an in vitro islet cell culture system. Cellular constructs composed of human islets and AEC (islet/AEC) were bioengineered under defined rotational cell culture conditions. Insulin secretory capacity was validated by glucose challenge and immunomodulatory potential characterized using a peripheral blood lymphocyte (PBL) proliferation assay. Results were compared to control constructs composed of islets or AEC cultured alone. Studies employing AEC-conditioned medium examined the role of soluble factors, and fluorescence immunocytochemistry was used to identify putative mediators of the immunosuppressive response in isolated AEC monocultures. Sustained, physiologically appropriate insulin secretion was observed in both islets and islet/AEC constructs. Activation of resting PBL proliferation occurred on exposure to human islets alone but this response was significantly (p <0.05) attenuated by the presence of AEC and AEC-conditioned medium. Mitogen (phytohaemagglutinin, 5 µg/ml)-induced PBL proliferation was sustained on contact with isolated islets but abrogated by AEC, conditioned medium, and the islet/AEC constructs. Immunocytochemical analysis of AEC monocultures identified a subpopulation of cells that expressed the proapoptosis protein Fas ligand. This study demonstrates that human islet/AEC constructs exhibit localized immunosuppressive properties with no impairment of ß-cell function. The data suggest that transplanted islets may benefit from the immune privilege status conferred on them as a consequence of their close proximity to human AEC. Such an approach may reduce the need for chronic systemic immunosuppression, thus making islet transplantation a more attractive treatment option for the management of insulin-dependent diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the relationship between vascular function parameters measured at the retinal and systemic level and known markers for cardiovascular risk in patients with impaired glucose tolerance (IGT). Sixty age- and gender- matched White-European adults (30 IGT and 30 normal glucose tolerance -NGT) were recruited for the study. Fasting plasma glucose, lipids and 24-hour blood pressure (BP) was measured in all subjects. Systemic vascular and endothelial function was assessed using carotid-artery intimal media thickness (cIMT) and flow mediated dilation (FMD). Retinal vascular reactivity was assessed by the Dynamic Retinal Vessel Analyser (DVA). Additionally, blood glutathione (GSH, GSSG and tGSH) and plasma von-Willebrand (vWF) factor levels were also measured. Individuals with IGT demonstrated higher BP values (p<0.001), fasting TG and TG:HDL ratios (p<0.001) than NGT subjects. Furthermore, Total:HDL-C ratios and Framingham scores were raised (p=0.010 and p<0.001 respectively). Blood glutathione levels (GSH, GSSG and tGSH) were lower (p<0.001, p=0.039 and p<0.001 respectively) while plasma vWF was increased (p=0.014) in IGT subjects compared to controls. IGT individuals also demonstrated higher IMT in right and left carotid arteries (p=0.017 and p=0.005, respectively) alongside larger brachial artery diameter (p=0.015), lower FMD% (p=0.026) and GTN induced dilation (GID) (p=0.012) than healthy controls. At the retinal arterial level, the IGT subjects showed higher baseline fluctuations (BDF) (p=0.026), longer reaction time (RT) (p=0.032) and reduced baseline-corrected flicker response (bFR) (p=0.045). In IGT subjects retinal BDF correlated with and Total:HDL (p= 0.003) and HDL-C (p= 0.004). Arterial RT also correlated with FMD (p=0.017) in IGT but not NGT subjects. In IGT individuals there is a relationship between macro- and microvascular function, as well as a direct correlation between the observed retinal microcirculatory changes and established plasma markers for CVD. Multifactorial preventive interventions to decrease vascular risk in these individuals should be considered.