7 resultados para MAGNESIUM-CHLORIDE
em Aston University Research Archive
Resumo:
To investigate the technical feasibility of a novel cooling system for commercial greenhouses, knowledge of the state of the art in greenhouse cooling is required. An extensive literature review was carried out that highlighted the physical processes of greenhouse cooling and showed the limitations of the conventional technology. The proposed cooling system utilises liquid desiccant technology; hence knowledge of liquid desiccant cooling is also a prerequisite before designing such a system. Extensive literature reviews on solar liquid desiccant regenerators and desiccators, which are essential parts of liquid desiccant cooling systems, were carried out to identify their advantages and disadvantages. In response to the findings, a regenerator and a desiccator were designed and constructed in lab. An important factor of liquid desiccant cooling is the choice of liquid desiccant itself. The hygroscopicity of the liquid desiccant affects the performance of the system. Bitterns, which are magnesium-rich brines derived from seawater, are proposed as an alternative liquid desiccant for cooling greenhouses. A thorough experimental and theoretical study was carried out in order to determine the properties of concentrated bitterns. It was concluded that their properties resemble pure magnesium chloride solutions. Therefore, magnesium chloride solution was used in laboratory experiments to assess the performance of the regenerator and the desiccator. To predict the whole system performance, the physical processes of heat and mass transfer were modelled using gPROMS® advanced process modelling software. The model was validated against the experimental results. Consequently it was used to model a commercials-scale greenhouse in several hot coastal areas in the tropics and sub-tropics. These case studies show that the system, when compared to evaporative cooling, achieves 3oC-5.6oC temperature drop inside the greenhouse in hot and humid places (RH>70%) and 2oC-4oC temperature drop in hot and dry places (50%
Resumo:
This study concerns the properties of the concentrated bittern solutions occurring as by-product from solar salt works, in relation to their potential use as liquid desiccants in cooling systems. Solutions of compositions similar to those of bitterns have been made up in the laboratory, as have concentrated mixtures of MgCl2–MgSO4–H2O. Measurements of vapour pressure have been carried out using an isoteniscope and are reported together with measurements of density and viscosity. Several theoretical models representing these properties are reviewed and compared against the experimental results; the average agreement between theory and experiment is within 5% for vapour pressure and better for the preferred models of the other two properties. Based on these findings, an expression is provided for the equilibrium relative humidity of bitterns as a function of concentration relative to raw seawater. The vapour pressures of bittern solutions are found to be similar to those of solutions containing only magnesium chloride but having the same mass fraction of total salts. Therefore magnesium chloride solution is a reasonable model for bitterns for the purpose of developing the proposed cooling system.
Resumo:
SD Apo Lactoferrin-Tobramycin/Gentamicin Combinations are superior to monotherapy in the eradication of Pseudomonas aeruginosa Biofilm in the lungs Wilson Oguejiofor1, Lindsay J. Marshall1, Andrew J. Ingham1, Robert Price2, Jag. Shur2 1School of Life and Health Sciences, Aston University, Birmingham, UK. 2School of Pharmacy and Pharmacology, University of Bath, Bath, UK. KEYWORDS: lactoferrin, apo lactoferrin, spray drying, biofilm, cystic fibrosis Introduction Chronic lung infections from the opportunistic pathogeen Pseudomonas aeruginosa has been recognised as a major contributor to the incidences of high morbidity and mortality amongst cystic fibrosis (CF) patients (1,2). Currently, strategies for managing lung infections in CF patients involves the aggressive use of aerosolised antibiotics (3), however, increasing evidence suggests that the biofilm component of P. aeruginosa in the lower airway remains unperturbed and is associated with the development of antibiotic resistance. If this is so then, there is an urgent need to suitably adjust the current treatment strategy so that it includes compounds that prevent biofilm formation or disrupt established biofilms. It is well understood that biofilm formation is strongly dependent on iron (Fe3+) availability (4), therefore aerosolised anti-infective formulations which has the ability to chelate iron may essentially be a well suited therapy for eliminating P. aeruginosa biofilms on CF airway epithelial cells (5). In this study, we report the use of combination therapy; an aminoglycosides (tobramycin and gentamicin) and an antimicrobial peptide (lactoferrin) to significantly deplete P. aeruginosa biofilms. We demonstrate that lactoferrin-tobramycin and lactoferrin-gentamicin combinations are superior to the single antibiotic regime currently being employed to combat P. aeruginosa biofilms. MATERIALS AND METHOD Antibiotics: The antibiotics used in this study included gentamicin and tobramycin supplied by Fagron, UK. Bacterial strain and growth conditions: Pseudomonas aeruginosa strain PAO1 was provided by Prof. Peter Lambert of Aston University, Birmingham UK. The Strains were routinely grown from storage in a medium supplemented with magnesium chloride, glucose and casamino acids. Dialysis of lactoferrin: Apo lactoferrin was prepared by dialyzing a suspension of lactoferrin for 24 hrs at 4 °C against 20 mmol/L sodium dihydrogen phosphate, 20 mmol/L sodium acetate and 40 mmol/L EDTA (pH 3.5). Ferric ion (Fe3+) removal was verified by atomic absorption spectroscopy measurements. Spray drying of combinations of lactoferrin and apo lactoferrin with the different aminoglycosides: Combinations of tobramycin and gentamicin with the different preparations of lactoferrin were spray dried (SD) as a 2% (w/v) aqueous suspension. The spray drying parameters utilized for the production of suitable micron-sized particles includes: Inlet temperature, 180°C, spray flow rate, 606 L/hr; pump setting, 10%; aspirator setting, 85% (34m3/hr) to produce various outlet temperatures ranging from 99 - 106°C. Viability assay: To test the bactericidal activity of the various combinations, a viability assay was performed as previously described by Xu, Xiong et al. (6) with some modifications. Briefly, 10µL of ~ c. 6.6 x 107 CFU mL-1 P. aeruginosa strain PAO1 suspension were incubated (37°C, 60 mins) with 90 µL of a 2 µg/mL concentration of the various combinations and sampled every 10 mins. After incubation, the cells were diluted in deionised water and plated in Mueller hinton agar plates. Following 24 h incubation of the plates at 37°C, the percentage of viable cells was determined relative to incubation without added antibiotics. Biofilm assay: To test the susceptibility of the P. aeruginosa strain to various antibiotics in the biofilms mode of growth, overnight cultures of P. aeruginosa were diluted 1:100 into fresh medium supplemented with magnesium chloride, glucose and casamino acids. Aliquots of the dilution were dispensed into a 96 well dish and incubated (37°C, 24 h). Excess broth was removed and the number of colony forming units per milliliter (CFU/mL) of the planktonic bacteria was quantified. The biofilms were then washed and stained with 0.1% (w/v) crystal violet for 15 mins at room temperature. Following vigorous washing with water, the stained biofilms were solubilized in 30% acetic acid and the absorbance at 550nm of a 125 µL aliquot was determined in a microplate reader (Multiskan spectrum, Thermo Scientific) using 30% acetic acid in water as the blank. Aliquots of the broth prior to staining were used as an indicator of the level of planktonic growth. RESULTS AND DISCUSSION Following spray drying, the mean yield, volume weighted mean diameter and moisture content of lactoferrin powder were measured and were as follows (Table 1 and table 2); Table 1: Spray drying parameters FormulationInlet temp (°C)Outlet temp (°C)Airflow rate (L/hr)Mean yield (%)Moisture content (%) SD Lactoferrin18099 - 10060645.2 ±2.75.9 ±0.4 SD Apo Lactoferrin180100 - 10260657.8 ±1.85.7 ±0.2 Tobramycin180102 - 10460682.1 ±2.23.2 ±0.4 Lactoferrin + Tobramycin180104 - 10660687.5 ±1.43.7 ±0.2 Apo Lactoferrin + Tobramycin180103 - 10460676.3 ±2.43.3 ±0.5 Gentamicin18099 - 10260685.4 ±1.34.0 ±0.2 Lactoferrin + Gentamicin180102 - 10460687.3 ±2.13.9 ±0.3 Apo Lactoferrin + Gentamicin18099 -10360680.1±1.93.4 ±0.4 Table 2: Particle size distribution d10 d50d90 SD Lactoferrin1.384.9111.08 SD Apo Lactoferrin1.284.7911.04 SD Tobramycin1.254.9011.29 SD Lactoferrin + Tobramycin1.175.2715.23 SD Apo Lactoferrin + Tobramycin1.115.0614.31 SD Gentamicin1.406.0614.38 SD Lactoferrin + Gentamicin1.476.2314.41 SD Apo Lactoferrin + Gentamicin1.465.1511.53 The bactericidal activity of the various combinations were tested against P. aeruginosa PAO1 following a 60 minute incubation period (Figure 1 and Figure 2). While 2 µg/mL of a 1:1 combination of spray dried apo lactoferrin and Gentamicin was able to completely kill all bacterial cells within 40 mins, the same concentration was not as effective for the other antibiotic combinations. However, there was an overall reduction of bacterial cells by over 3 log units by the other combinations within 60 mins. Figure 1: Logarithmic plot of bacterial cell viability of various combinations of tobramycin and lactoferrin preparations at 2µg/mL (n = 3). Figure 2: Logarithmic plot of bacterial cell viability of various combinations of gentamicin and lactoferrin preparations at 2µg/mL (n = 3). Crystal violet staining showed that biofilm formation by P. aeruginosa PAO1 was significantly (ANOVA, p < 0.05) inhibited in the presence of the different lactoferrin preparations. Interestingly, apo lactoferrin and spray dried lactoferrin exhibited greater inhibition of both biofilm formation and biofilm persistence (Figure 2). Figure 2: Crystal violet staining of residual biofilms of P. aeruginosa following a 24hr incubation with the various combinations of antibiotics and an exposure to 48 hr formed biofilms. CONCLUSION In conclusion, combination therapy comprising of an antimicrobial peptide (lactoferrin) and an aminoglycosides (tobramycin or gentamicin) provides a feasible and alternative approach to monotherapy since the various combinations are more efficient than the respective monotherapy in the eradication of both planktonic and biofilms of P. aeruginosa. ACKNOWLEDGEMENT The authors would like to thank Mr. John Swarbrick and Friesland Campina for their generous donation of the Lactoferrin. REFERENCES 1.Hassett, D.J., Sutton, M.D., Schurr, M.J., Herr, A.B., Caldwell, C.C. and Matu, J.O. (2009), "Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways". Trends in Microbiology, 17, 130-138. 2.Trust, C.F. (2009), "Antibiotic treatment for cystic fibrosis". Report of the UK Cystic Fibrosis Trust Antibiotic Working Group. Consensus document. London: Cystic Fibrosis Trust. 3.Garcia-Contreras, L. and Hickey, A.J. (2002), "Pharmaceutical and biotechnological aerosols for cystic fibrosis therapy". Advanced Drug Delivery Reviews, 54, 1491-1504. 4.O'May, C.Y., Sanderson, K., Roddam, L.F., Kirov, S.M. and Reid, D.W. (2009), "Iron-binding compounds impair Pseudomonas aeruginosa biofilm formation, especially under anaerobic conditions". J Med Microbiol, 58, 765-773. 5.Reid, D.W., Carroll, V., O'May, C., Champion, A. and Kirov, S.M. (2007), "Increased airway iron as a potential factor in the persistence of Pseudomonas aeruginosa infection in cystic fibrosis". European Respiratory Journal, 30, 286-292. 6.Xu, G., Xiong, W., Hu, Q., Zuo, P., Shao, B., Lan, F., Lu, X., Xu, Y. and Xiong, S. (2010), "Lactoferrin-derived peptides and Lactoferricin chimera inhibit virulence factor production and biofilm formation in Pseudomonas aeruginosa". J Appl Microbiol, 109, 1311-1318.
Resumo:
Liquid desiccant systems are of potential interest as a means of cooling greenhouses to temperatures below those achieved by conventional means. However, only very little work has been done on this technology with previous workers focussing on the cooling of human dwellings using expensive desiccants such as lithium salts. In this study we are designing a system for greenhouse cooling based on magnesium chloride desiccant which is an abundant and non-toxic substance. Magnesium chloride is found in seawater, for example, and is a by-product from solar salt works. We have carried out a detailed experimental study of the relevant properties of magnesium rich solutions. In addition we have constructed a test rig that includes the main components of the cooling system, namely a dehumidifier and solar regenerator. The dehumidifier is a cross-flow device that consists of a structured packing made of corrugated cellulose paper sheets with different flute angles and embedded cooling tubes. The regenerator is of the open type with insulated backing and fabric covering to spread the flow of desiccant solution. Alongside these experiments we are developing a mathematical model in gPROMS® that combines and simulates the heat and mass transfer processes in these components. The model can be applied to various geographical locations. Here we report predictions for Havana (Cuba) and Manila (Philippines), where we find that average wet-bulb temperatures can be lowered by 2.2 and 3°C, respectively, during the month of May.
Resumo:
Evaporative pads are frequently used for the cooling of greenhouses. However, a drawback of this method is the consumption of freshwater. In this paper it is shown, both theoretically and through a practical example, that effective evaporative cooling can be achieved using seawater in place of fresh water. The advantages and drawbacks of using seawater are discussed more generally. In climates that are both hot and humid, evaporative systems cannot always provide sufficient cooling, with the result that cultivation often has to be halted during the hottest months of the year. To overcome this, we propose a concept in which a desiccant pad is used to dehumidify the air before it enters the evaporative pad. The desiccant pad is supplied with a hygroscopic liquid that is regenerated by the energy of the sun. The performance of this concept has been modelled and the properties of various liquids have been compared. An attractive option is to obtain the liquid from seawater itself, given that seawater contains hygroscopic salts such as magnesium chloride. Preliminary experiments are reported in which magnesium chloride solution has been regenerated beneath a solar simulator.
Resumo:
In South Gwynedd, Wales, U.K., the calcicole lichen Xanthoria parietina occurs not only on alkaline substrates at inland sites but also on siliceous rock at coastal martimie sites while the calcifuge species Parmelia saxatilis occurs only at inland sites and on slate rocks. Samples of maritime and inland slate did not differ significantly in their calcium or magnesium content. Thalli of X. parietina on pieces of slate did not survive when transplanted from maritime rocks to a site inland. Thalli of maritime X. parietina and P. saxatilis on slate were then transplanted to a site inland and were treated at intervals during 1 year either with calcium carbonate applied as a thick paste or a 0.25 mM solution of calcium chloride. Treatment of X. parietina with calcium carbonate enabled the thalli to survive and grow. However, addition of calcium carbonate to P. saxatilis resulted in low growth rates and fragmentation of the centres of the thalli. The calcium chloride solution had no statistically significant effects on the growth of either species. In addition, thalli of both species were treated with calcium or magnesium carbonates or wetted with an alkaline buffer at intervals over 12-14 months. Thalli of X. parietina survived and grew rapidly when treated with either carbonate but the growth of the buffer-treated thalli gradually declined over the experimental period. Thalli of P. saxatilis fragmented and disappeared after 8-10 months after treatment with either carbonate but normal growth occurred in the buffer treatment. Xanthoria parietina may occur on siliceous maritime rocks at the site because of the presence of calcium or magnesium in sea spray combined with the spray’s alkaline pH. By contrast, P. saxatilis may be confined to siliceous rocks inland because the thalli grow poorly in the presence of calcium and magnesium.
Resumo:
Sodium formate, potassium acetate and a mixture of calcium and magnesium acetate (CMA) have all been identified as effective de-icing agents. In this project an attempt has been made to elucidate potentially deleterious effects of these substances on the durability of reinforced concrete. Aspects involving the corrosion behaviour of embedded steel along with the chemical and physical degradation of the cementitious matrix were studied. Ionic diffusion characteristics of deicer/pore solution systems in hardened cement paste were also studied since rates of ingress of deleterious agents into cement paste are commonly diffusion-controlled. It was found that all the compounds tested were generally non-corrosive to embedded steel, however, in a small number of cases potassium acetate did cause corrosion. Potassium acetate was also found to cause cracking in concrete and cement paste samples. CMA appeared to degrade hydrated cement paste although this was apparently less of a problem when commercial grade CMA was used in place of the reagent grade chemical. This was thought to be due to the insoluble material present in the commercial formulation forming a physical barrier between the concrete and the de-icing solution. With the test regimes used sodium formate was not seen to have any deleterious effect on the integrity of reinforced concrete. As a means of restoring the corrosion protective character of chloride-contaminated concrete the process of electrochemical chloride removal has been previously developed. Potential side-effects of this method and the effect of external electrolyte composition on chloride removal efficiency were investigated. It was seen that the composition of the external electrolyte has a significant effect on the amount of chloride removed. It was also found that, due to alterations to the composition of the C3A hydration reaction products, it was possible to remove bound chloride as well as that in the pore solution. The use of an external electrolyte containing lithium ions was also tried as a means of preventing cathodically-induced alkali-silica reaction in concretes containing potentially reactive aggregates. The results obtained were inconclusive and further practical development of this approach is needed.