4 resultados para MACROCYCLES
em Aston University Research Archive
Resumo:
The X-ray crystal structures of two related trans-N2S2 copper macrocycles are reported. One was isolated with the copper in the divalent form and the other with copper in its univalent form affording a valuable insight into the changes of geometry and metrical parameters that occur during redox processes in macrocyclic copper complexes. A variable temperature NMR study of the copper(I) complex is reported, indicative of a chair-boat conformational change within the alkyl chain backbone of the macrocycle. It was possible to extract the relevant kinetic and thermodynamic parameters (?G‡, 57.8 kJ mol-1; ?H‡, 52.1 kJ mol-1; ?S‡, -19.2 J K-1 mol-1) for this process at 298 K. DFT molecular orbital calculations were used to confirm these observations and to calculate the energy difference (26.2 kJmol-1) between the copper(I) macrocycle in a planar and a distorted tetrahedral disposition.
Resumo:
A series of bis-salicylidene based N2S2 copper macrocycles were prepared, structurally characterised and subjected to electrochemical analysis. The aim was to investigate the effects of length of polymethylene chains between either the imine donors or the sulfur donors on redox state and potential of the metal. The complexes structurally characterised had either distorted square planar or tetrahedral geometries depending on their oxidation state (Cu2+ or Cu+, respectively), and the N-(CH2)n-N bridge was found to be most critical moiety in determining the redox potential and oxidation state of the copper macrocycles, with relatively little change in these properties caused by lengthening the S-(CH2)n-S bridge from two to three carbons. In fact, a weakness was observed in the complexes at the sulfur donor, as further lengthening of the S-(CH2)n-S methylene bridge to four carbons caused fission of the carbon-sulfur bond to give dimeric rings and supramolecular assemblies. Cu+ complexes could be oxidised to Cu2+ by tert-butylhydroperoxide, with a corresponding change in the spectrophotometric properties, and likewise Cu2+ complexes could be reduced to Cu+ by treatment with ß-mercaptoethylamine. However, repeated redox cycles appeared to compromise the stability of the macrocycles, most probably by a competing oxidation of the ligand. Thus the copper N2S2 macrocycles show potential as redox sensors, but further development is required to improve their performance in a biochemical environment.
The structural and electrochemical consequences of hydrogenating Copper N2S2 Schiff base macrocycles
Resumo:
A series of cis and trans tetradentate copper macrocyclic complexes, of ring size fourteen - sixteen, which employ amine and thioether donor groups are reported. Apart from 5,6,15,16-bisbenzo-8,13-diaza-1,4-dithia-cyclohexadecane copper(I) (cis-[Cu(H4NbuSen)]+) all of the complexes are obtained in the copper(II) form. Crystallographic analysis shows that the copper(II) complexes all adopt a distorted planar geometry around the copper. In contrast, cis-[Cu(H4NbuSen)]+ is found to adopt a distorted tetrahedral geometry. The complexes were subjected to electrochemical analysis in water and acetonitrile. The effect of the solvent, positions of the donor atoms (cis/trans) on E1/2 is discussed as is the comparison of the electrochemical behaviour of these complexes with their parent Schiff base macrocycles.
Resumo:
A series of simple copper N(2)S(2) macrocycles were examined for their potential as biological redox sensors, following previous characterization of their redox potentials and crystal structures. The divalent species were reduced by glutathione or ascorbate at a biologically relevant pH in aqueous buffer. A less efficient reduction was also achieved by vitamin E in DMSO. Oxidation of the corresponding univalent copper species by sodium hypochlorite resulted in only partial (~65 %) recovery of the divalent form. This was concluded to be due to competition between metal oxidation and ligand oxidation, which is believed to contribute to macrocycle demetallation. Electrospray mass spectrometry confirmed that ligand oxidation had occurred. Moreover, the macrocyclic complexes could be demetallated by incubation with EDTA and bovine serum albumin, demonstrating that they would be inappropriate for use in biological systems. The susceptibility to oxidation and demetallation was hypothesized to be due to oxidation of the secondary amines. Consequently these were modified to incorporate additional oxygen donor atoms. This modification led to greater resistance to demetallation and ligand oxidation, providing a better platform for further development of copper macrocycles as redox sensors for use in biological systems.