7 resultados para Lys49-phospholipase A2

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanism by which the adipokine zinc-a2-glycoprotein (ZAG) increases the mass of gastrocnemius, but not soleus muscle of diabetic mice, has been evaluated both in vivo and in vitro. There was an increased phosphorylation of both double-stranded RNA-dependent protein kinase and its substrate, eukaryotic initiation factor-2a, which was attenuated by about two-thirds in gastrocnemius but not soleus muscle of ob/ob mice treated with ZAG (50 µg, iv daily) for 5 d. ZAG also reduced the expression of the phospho forms of p38MAPK and phospholipase A2, as well as expression of the ubiquitin ligases (E3) muscle atrophy F-box/atrogin-1 and muscle RING finger protein, and the increased activity of both caspase-3 and casapse-8 to values found in nonobese controls. ZAG also increased the levels of phospho serine-threonine kinase and mammalian target of rapamycin in gastrocnemius muscle and reduced the phosphorylation of insulin receptor substrate-1 (Ser307) associated with insulin resistance. Similar changes were seen with ZAG when murine myotubes were incubated with high glucose concentrations (10 and 25 mm), showing that the effect of ZAG was direct. ZAG produced an increase in cAMP in murine myotubes, and the effects of ZAG on protein synthesis and degradation in vitro could be replicated by dibutyryl cAMP. ZAG increased cAMP levels of gastrocnemius but not soleus muscle. These results suggest that protein accretion in skeletal muscle in response to ZAG may be due to changes in intracellular cAMP and also that ZAG may have a therapeutic application in the treatment of muscle wasting conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proteolysis-inducing factor (PIF) is produced by cachexia-inducing tumours and initiates protein catabolism in skeletal muscle. The potential signalling pathways linking the release of arachidonic acid (AA) from membrane phospholipids with increased expression of the ubiquitin-proteasome proteolytic pathway by PIF has been studied using C2C12 murine myotubes as a surrogate model of skeletal muscle. The induction of proteasome activity and protein degradation by PIF was blocked by quinacrine, a nonspecific phospholipase A2 (PLA2) inhibitor and trifluroacetyl AA, an inhibitor of cytosolic PLA2. PIF was shown to increase the expression of calcium-independent cytosolic PLA2, determined by Western blotting, at the same concentrations as those inducing maximal expression of 20S proteasome α-subunits and protein degradation. In addition, both U-73122, which inhibits agonist-induced phospholipase C (PLC) activation and D609, a specific inhibitor of phosphatidylcholine-specific PLC also inhibited PIF-induced proteasome activity. This suggests that both PLA 2 and PLC are involved in the release of AA in response to PIF, and that this is important in the induction of proteasome expression. The two tyrosine kinase inhibitors genistein and tryphostin A23 also attenuated PIF-induced proteasome expression, implicating tyrosine kinase in this process. PIF induced phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) at the same concentrations as that inducing proteasome expression, and the effect was blocked by PD98059, an inhibitor of MAPK kinase, as was also the induction of proteasome expression, suggesting a role for MAPK activation in PIF-induced proteasome expression. © 2003 Cancer Research UK.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work presented in this thesis was undertaken to increase understanding of the intracellular mechanisms regulating acid secretion by gastric parietal cells. Investigation of the effects of protein kinase C on secretory activity induced by a variety of agents was a major objective. A further aim was to establish the sites at which epidermal growth factor (EGF) acts to stimulate prostaglandin E2 (PGE2) production and to inhibit acid secretion. These investigations were carried out by using the HGT-1 human gastric cancer cell line and freshly isolated rat parietal cells. In HGT-1 cells, the cyclic AMP response to histamine and to truncated glucagon-like peptide 1 (TGLP-1) was reduced when protein kinase C was activated by 12-0-tetradecanoylphorbol 13-acetate (TPA). Receptor-binding studies and experiments in which cyclic AMP production in HGT-1 cells was stimulated by gastric inhibitory polypeptide, cholera toxin and forskolin suggested that the effect of TPA was mediated by uncoupling of the histamine H2 receptor from the guanine nucleotide regulatory protein Gs, possibly by phosphorylation of the receptor. An involvement of protein kinase C α in this effect was suggested because an antibody to this isoform specifically prevented the inhibitory effects of TPA on histamine-stimulated adenylate cyclase activity in a membrane fraction prepared from HGT-1 cells. Carbachol-stimulated secretory activity in parietal cells was specifically inhibited by Ro 31-8220, a bisindolylmaleimide inhibitor of protein kinase C. Thus protein kinase C may play a role in the activation of the secretory response to carbachol. In parietal cells prelabelled with [3H]-arachidonic acid or [3H]myristic acid, EGF did not affect [3H]-fatty acid or [3H] - diacylglycerol content. No evidence for effects of EGF on phosphatidylinositol glycan-specific phospholipase C, phospholipase A2 or on low Km cyclic AMP phosphodiesterase activities were found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The antioxidants butylated hydroxytoluene (BHT, 1 mM) and d-α-tocopherol (10 μM) completely attenuated protein degradation in murine myotubes in response to both proteolysis-inducing factor (PIF) and angiotensin II (Ang II), suggesting that the formation of reactive oxygen species (ROS) plays an important role in this process. Both PIF and Ang II induced a rapid and transient increase in ROS formation in myotubes, which followed a parabolic dose-response curve, similar to that for total protein degradation. Antioxidant treatment attenuated the increase in expression and activity of the ubiquitin-proteasome proteolytic pathway by PIF and Ang II, by preventing the activation of the transcription factor nuclear factor-κB (NF-κB), through inhibition of phosphorylation of the NF-κB inhibitor protein (I-κB) and its subsequent degradation. ROS formation by both PIF and Ang II was attenuated by diphenyleneiodonium (10 μM), suggesting that it was mediated through the NADPH oxidase system. ROS formation was also attenuated by trifluoroacetyl arachidonic acid (10 μM), a specific inhibitor of cytosolic phospholipase A2, U-73122 (5 μM) and D609 (200 μM), inhibitors of phospholipase C and calphostin C (300 nM), a highly specific inhibitor of protein kinase C (PKC), all known activators of NADPH oxidase. Myotubes containing a dominant-negative mutant of PKC did not show an increase in ROS formation in response to either PIF or Ang II. The two Rac1 inhibitors W56 (200 μM) and NSC23766 (10 μM) also attenuated both ROS formation and protein degradation induced by both PIF and Ang II. Rac1 is known to mediate signalling between the phosphatidylinositol-3 kinase (PI-3K) product and NADPH oxidase, and treatment with LY24002 (10 μM), a highly selective inhibitor of PI-3K, completely attenuated ROS production in response to both PIF and Ang II, and inhibited total protein degradation, while the inactive analogue LY303511 (100 μM) had no effect. ROS formation appears to be important in muscle atrophy in cancer cachexia, since treatment of weight losing mice bearing the MAC16 tumour with d-α-tocopherol (1 mg kg- 1) attenuated protein degradation and increased protein synthesis in skeletal muscle. © 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of agents with differing selectivity profiles for the non-a2 adrenoceptor binding site (NAIBS), imidazoline preferring receptor (IPR) and a2-adrenoceptor were employed in a series of behavioural and neurochemical experiments to determine a functional role for the former two sites. The highly selective NAIBS ligand RX801 077 produced an increase in rat brain extracellular noradrenaline (NA) levels, as determined by the technique of in vivo microdialysis, which may underlie its ability to produce a discriminable cue in the same species. This increase in NA may be due to a suggested link between the NAIBS and the monoamine oxidase inhibitor (MAOI) activity of RX801 077. For instance, the RX801 077 cue was substituted for by the MAOI drugs pargyline and moclobemide, which themselves down regulate NAIBS when administered chronically. RX811 059 substituted for the RX801 077 cue which may be due its ability to stimulate NA release via its activity as a highly selective a2-adrenoceptor antagonist. An effect upon NA output may also explain the ability of RX801 077 to 'mimic' the anti-immobility effect of the antidepressant drug desmethylimipramine (DMJ) in the forced swimming test. Further studies are therefore required to examine a possible role for the NAIBS in the treatment of depression. Discriminable cues were also produced by RX811 059 and the a2- adrenoceptor agonist clonidine, probably as a consequence of their respective ability to stimulate and inhibit NA output via their opposing activity at a2-adrenoceptors. The IPR has been suggested to play a role in mediating the hypotensive effect of clonidine, although a precise role was unable to be established for this site in the present studies due to the unavailability of highly selective IPA agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of epitopes capable of binding multiple HLA types will significantly rationalise the development of epitope-based vaccines. A quantitative method assessing the contribution of each amino acid at each position was applied to over 500 nonamer peptides binding to 5 MHC alleles — A*0201, A*0202, A*0203, A*0206 and A*6802 — which together define the HLA-A2-like supertype. FXIGXI (L)IFV was identified as a supermotif for the A2-supertype based on the contributions of the common preferred amino acids at each of the nine positions. The results indicate that HLA-A*6802 is an intermediate allele standing between A2 and A3 supertypes: at anchor position 2 it is closer to A3 and at anchor position 9 it is nearer to A2. Models are available free on-line at http://www.jenner.ac.uk/MHCPred and can be used for binding affinity prediction.