3 resultados para Low earth orbits

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurements of the sea surface obtained by satellite borne radar altimetry are irregularly spaced and contaminated with various modelling and correction errors. The largest source of uncertainty for low Earth orbiting satellites such as ERS-1 and Geosat may be attributed to orbital modelling errors. The empirical correction of such errors is investigated by examination of single and dual satellite crossovers, with a view to identifying the extent of any signal aliasing: either by removal of long wavelength ocean signals or introduction of additional error signals. From these studies, it was concluded that sinusoidal approximation of the dominant one cycle per revolution orbit error over arc lengths of 11,500 km did not remove a significant mesoscale ocean signal. The use of TOPEX/Poseidon dual crossovers with ERS-1 was shown to substantially improve the radial accuracy of ERS-1, except for some absorption of small TOPEX/Poseidon errors. The extraction of marine geoid information is of great interest to the oceanographic community and was the subject of the second half of this thesis. Firstly through determination of regional mean sea surfaces using Geosat data, it was demonstrated that a dataset with 70cm orbit error contamination could produce a marine geoid map which compares to better than 12cm with an accurate regional high resolution gravimetric geoid. This study was then developed into Optimal Fourier Transform Interpolation, a technique capable of analysing complete altimeter datasets for the determination of consistent global high resolution geoid maps. This method exploits the regular nature of ascending and descending data subsets thus making possible the application of fast Fourier transform algorithms. Quantitative assessment of this method was limited by the lack of global ground truth gravity data, but qualitative results indicate good signal recovery from a single 35-day cycle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Orbit determination from artificial satellite observations is a key process in obtaining information about the Earth and its environment. A study of the perturbations experienced by these satellites enables knowledge to be gained of the upper atmosphere, the gravity field, ocean tides, solid-Earth tides and solar radiation. The gravity field is expressed as a double infinite series of associated Legendre functions (tesseral harmonics). In contemporary global gravity field models the overall geoid is well determined. An independent check on these gravity field harmonics of a particular order may be made by analysis of satellites that pass through resonance of that order. For such satellites the perturbations of the orbital elements close to resonance are analysed to derive lumped harmonic coefficients. The orbital parameters of 1984-106A have been determined at 43 epochs, during which time the satellite was close to 14th order resonance. Analysis of the inclination and eccentricity yielded 6 lumped harmonic coefficients of order 14 whilst analysis of the mean motion yielded additional pairs of lumped harmonics of orders 14, 28 and 42, with the 14th order harmonics superseding those obtained from analysis of the inclination. This thesis concentrates in detail on the theoretical changes of a near-circular satellite orbit perturbed by the Earth's gravity field under the influence of minimal air-drag whilst in resonance with the Earth. The satellite 1984-106A experienced the interesting property of being temporarily trapped with respect to a secondary resonance parameter due to the low air-drag in 1987. This prompted the theoretical investigation of such a phenomenon. Expressions obtained for the resonance parameter led to the determination of 8 lumped harmonic coefficients, coincidental to those already obtained. All the derived lumped harmonic values arc used to test the accuracy of contemporary gravity field models and the underlying theory in this thesis.