23 resultados para Low concentrations

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Bacterial endotoxin is a potently inflammatory antigen that is abundant in the human gut. Endotoxin circulates at low concentrations in the blood of all healthy individuals, although elevated concentrations are associated with an increased risk of atherosclerosis. Objective: We sought to determine whether a high-fat meal or smoking increases plasma endotoxin concentrations and whether such concentrations are of physiologic relevance. Design: Plasma endotoxin and endotoxin neutralization capacity were measured for 4 h in 12 healthy men after no meal, 3 cigarettes, a high-fat meal, or a high-fat meal with 3 cigarettes by using the limulus assay. Results: Baseline endotoxin concentrations were 8.2 pg/mL (interquartile range: 3.4–13.5 pg/mL) but increased significantly (P < 0.05) by ≈50% after a high-fat meal or after a high-fat meal with cigarettes but not after no meal or cigarettes alone. These results were validated by the observations that a high-fat meal with or without cigarettes, but not no meal or smoking, also significantly (P < 0.05) reduced plasma endotoxin neutralization capacity, which is an indirect measure of endotoxin exposure. Human monocytes, but not aortic endothelial cells, were responsive to transient (30 s) or low-dose (10 pg/mL) exposure to endotoxin. However, plasma from whole blood treated with as little as 10 pg endotoxin/mL increased the endothelial cell expression of E-selectin, at least partly via tumor necrosis factor-α–induced cellular activation. Conclusions: Low-grade endotoxemia may contribute to the postprandial inflammatory state and could represent a novel potential contributor to endothelial activation and the development of atherosclerosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellular thiols are critical moieties in signal transduction, regulation of gene expression, and ultimately are determinants of specific protein activity. Whilst protein bound thiols are the critical effector molecules, low molecular weight thiols, such as glutathione, play a central role in cytoprotection through (1) direct consumption of oxidants, (2) regeneration of protein thiols and (3) export of glutathione containing mixed disulphides. The brain is particularly vulnerable to oxidative stress, as it consumes 20% of oxygen load, contains high concentrations of polyunsaturated fatty acids and iron in certain regions, and expresses low concentrations of enzymic antioxidants. There is substantial evidence for a role for oxidative stress in neurodegenerative disease, where excitotoxic, redox cycling and mitochondrial dysfunction have been postulated to contribute to the enhanced oxidative load. Others have suggested that loss of important trophic factors may underlie neurodegeneration. However, the two are not mutually exclusive; using cell based model systems, low molecular weight antioxidants have been shown to play an important neuroprotective role in vitro, where neurotrophic factors have been suggested to modulate glutathione levels. Glutathione levels are regulated by substrate availability, synthetic enzyme and metabolic enzyme activity, and by the presence of other antioxidants, which according to the redox potential, consume or regenerate GSH from its oxidised partner. Therefore we have investigated the hypothesis that amyloid beta neurotoxicity is mediated by reactive oxygen species, where trophic factor cytoprotection against oxidative stress is achieved through regulation of glutathione levels. Using PC12 cells as a model system, amyloid beta 25-35 caused a shift in DCF fluorescence after four hours in culture. This fluorescence shift was attenuated by both desferioxamine and NGF. After four hours, cellular glutathione levels were depleted by as much as 75%, however, 24 hours following oxidant exposure, glutathione concentration was restored to twice the concentration seen in controls. NGF prevented both the loss of viability seen after 24 hours amyloid beta treatment and also protected glutathione levels. NGF decreased the total cellular glutathione concentration but did not affect expression of GCS. In conclusion, loss of glutathione precedes cell death in PC12 cells. However, at sublethal doses the surviving fraction respond to oxidative stress by increasing glutathione levels, where this is achieved, at least in part, at the gene level through upregulation of GCS. Whilst NGF does protect against oxidative toxicity, this is not achieved through upregulation of GCS or glutathione.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Induction of lipolysis in murine white adipocytes, and stimulation of adenylate cyclase in adipocyte plasma membranes, by a tumour-produced lipid mobilizing factor, was attenuated by low concentrations (10-7-10-5M) of the specific β3-adrenoceptor antagonist SR59230A. Lipid mobilizing factor (250 nM) produced comparable increases in intracellular cyclic AMP in CHOKI cells transfected with the human β3-adrenoceptor to that obtained with isoprenaline (1 nM). In both cases cyclic AMP production was attenuated by SR59230A confirming that the effect is mediated through a β3-adrenoceptor. A non-linear regression analysis of binding of lipid mobilizing factor to the β3-adrenoceptor showed a high affinity binding site with a Kd value 78±45 nM and a Bmax value (282±1 fmole mg protein-1) comparable with that of other β3-adrenoceptor agonists. These results suggest that lipid mobilizing factor induces lipolysis through binding to a β3-adrenoceptor. © 2002 The Cancer Research Campaign.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adipocytes isolated from cachectic mice bearing the MAC 16 tumour showed over a 3-fold increase in lipolytic response to both low concentrations of isoprenaline and a tumour-derived lipid mobilizing factor (LMF). This was reflected by an enhanced stimulation of adenylate cyclase in plasma membrane fractions of adipocytes in the presence of both factors. There was no up-regulation of adenylate cyclase in response to forskolin, suggesting that the effect arose from a change in receptor number or G-protein expression. Immunoblotting of adipocyte membranes from mice bearing the MAC16 tumour showed an increased expression of Gαs up to 10% weight loss and a reciprocal decrease in Gα. There was also an increased expression of Gαs and a decrease in Gα in adipose tissue from a patient with cancer-associated weight loss compared with a non-cachectic cancer patient. The changes in G-protein expression were also seen in adipose tissue of normal mice administered pure LMF as well as in 3T3L1 adipocytes in vitro. The changes in G-protein expression induced by LMF were attenuated by the polyunsaturated fatty acid, eicosapentaenoic acid (EPA). This suggests that this tumour-derived lipolytic factor acts to sensitize adipose tissue to lipolytic stimuli, and that this effect is attenuated by EPA, which is known to preserve adipose tissue in cancer cachexia. © 2001 Cancer Research Campaign.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymers are subject to oxidation throughout their lifecycle. Antioxidants are generally incorporated in polymers to inhibit or minimise oxidative degradation. Hindered phenolic antioxidants are important stabilisers for polyolefins. However, hindered phenols undergo chemical transformations while performing their antioxidant function during processing and fabrication. In addition, antioxidants are subject to loss from polymers during processing, or subsequently in-service. Migration of antioxidants is a major concern in applications involving polymers in direct contact with food and human environment. This concern is compounded by the realisation that very little is known about the nature and the migration behaviour of antioxidant transformation products. In this work, the antioxidant role of the biological antioxidant -tocopherol (Vitamin E) , which is structurally similar to many synthetic hindered phenols, is investigated in low density polyethylene (LDPE) and polypropylene (PP). The melt stabilising effectiveness of -tocopherol (Toc) was found to be very high, higher than that of commercial hindered phenol antioxidants, such as Irganox 1076 (Irg 1076) and Irganox 1010 (Irg 1010), after multiple extrusions, especially at very low concentrations. The high antioxidant activity of Toc was shown to be due, at least in part, to the formation of transformation products during processing. The main products formed are stereoisomers of dimers and trimers, as well as aldehydes and a quinone - the relative concentration of each was shown to depend on the processing severity, the initial antioxidant concentration and oxygen availability. These transformation products are shown to impart better, similar or lower melt stability to the polymer than the parent antioxidant. The nature of the products formed from Toc during processing was compared with those formed during processing of Irg 1076 and Irg 1010 with LDPE and a mechanism for the melt stabilisation of Toc was proposed and compared with the stabilisation mechanisms of the synthetic antioxidants Irg 1076 and Irg 1010.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objectives of this research were to develop optimised chemical compositions and reactive processing conditions for grafting a functional monomer maleic anhydride (MA) in polypropylene (PP), ethylene propylene diene monomer (EPDM) and mixtures of PP-EPDM, and to optimise synthetic routes for production of PP/EPDM copolymers for the purpose of compatibilisation of PP/EPDM blends. The MA-functionalisation was achieved using an internal mixer in the presence of low concentrations (less than 0.01 molar ratio) of a free radical initiator. Various methods were used to purify MA-functionalised PP and the grafting yield was determined using either FTIR or titrametry. The grafting yield of MA alone, which due to its low free-radical reactivity towards polymer macroradicals, was accompanied by severe degradation in the case of PP and crosslinking for EPDM. In the case of MA-functionalised PP/EPDM, both degradation and crosslinking occurred though not to a great extent. The use of tri-functional coagents e.g. trimethylopropane triacrylates (TRIS) with MA, led to high improvement of the grafting yield of MA on the polymers. This is almost certainly due to high free-radical activity of TRIS leading to copolymerisation of MA and TRIS which was followed by grafting of the copolymer onto the polymer backbone. In the case of PP, the use of coagent was also found to reduce the polymer degradation. PP/EPDM copolymers with optimum tensile properties were synthesised using a 'one-step' continues reactive processing procedure. This was achieved firstly by functionalisation of a mixture of PP (higher w/w ratio) and EPDM (low w/w ratio) with MA, in the presence of the coagent TRIS and a small concentration of a free radical initiator. This was then followed by an imidisation reaction with the interlinking agent hexamethylene diamine (HEMDA). Small amount of copolymers, up to 5 phr, which were interlinked with up to 15 phr of HEMDA, were sufficient to compatibilise PP/EPDM75/25 blends resulting in excellent tensile properties compared to binary PP/EPDM 75/25 blend. Improvement in blend's compatibility and phases-stabilisation (observed through tensile and SEM analysis) was shown in all cases with significant interphases adhesion improvement between PP and EPDM, and reduction in domain size across the fractured surface indicating efficient distribution of the compatibiliser.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kinetics of the polymerization of styrene iniated by 1-chloro-1-phenyltehane/tin (IV) chloride in the presence of tetrabutylammonium chloride have been studied. Dilatometry studies at 25 °C were conducted and the orders of reaction were established. Molecular weight studies were conducted for these experiments using size exclusion chromatography. These studies indicated that transfer/termination reactions were present. The observed kinetics may be explained by a polymerization mechanism involving a single propagating species which is present in low concentrations. Reactions at 0 °C and -15 °C have shown that a "living" polymerization could be obtained at low temperatures. A method was derived to study the kinetics of a "living" polymerization by following the increase in degree of polymerization with time. Polymerizations of styrene were conducted using 1,4-bis(bromomethyl)benzene as a difunctional co-catalyst. These reactions produced polymers with broad or bimodal molecular weight distributions. These observations may be explained by the rate of initiation being slower than the rate of propagation or the presence of transfer/termination reactions. Reactions were conducted using a co-catalyst using a co-catalyst produced by the addition of 1,1-diphenylethane to 1,4-bis(bromomethyl)benzene. Size exclusion chromatography studies showed that the polymers produced had a narrower molecular weight distribution than those produced by polymerizations initiated by 1,4-bis(bromomethyl)benzene alone. However the polydispersity was still observed to increase with reaction time. This may also be explained by slow initiation compared to the rate of propagation. Polymerizations initiated by both bifunctional initiators were examined using the method of studying reaction kinetics by following the change in number average degree of polymerization. The results indicated that a straight line relationship could also be obtained with a non-living polymerization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The two main objectives of the research work conducted were firstly, to investigate the processing and rheological characteristics of a new generation metallocene catalysed linear low density polyethylene (m-LLDPE), in order to establish the thermal oxidative degradation mechanism, and secondly, to examine the role of selected commercial stabilisers on the melt stability of the polymers. The unstabilised m-LLDPE polymer was extruded (pass I) using a twin screw extruder, at different temperatures (210-285°C) and screw speeds (50-20rpm) and was subjected to multiple extrusions (passes, 2-5) carried out under the same processing conditions used in the first pass. A traditional Ziegler/Natta catalysed linear low density polyethylene (z-LLDPE) produced by the same manufacturer was also subjected to a similar processing regime in order to compare the processability and the oxidative degradation mechanism (s) of the new m-LLDPE with that of the more traditional z-LLDPE. The effect of some of the main extrusion characteristics of the polymers (m-LLDPE and z-LLDPE) on their melt rheological behaviour was investigated by examining their melt flow performance monitored at two fixed low shear rate values, and their rheological behaviour investigated over the entire shear rates experienced during extrusion using a twin-bore capillary rheometer. Capillary rheometric measurements, which determine the viscous and elastic properties of polymers, have shown that both polymers are shear thinning but the m-LLDPE has a higher viscosity than z-LLDPE and the extent of reduction in viscosity of the former when the extrusion temperature was increased from 210°C to 285°C was much higher than in the case of the z-LLDPE polymer. This was supplied by the findings that the m-LLDPE polymer required higher power consumption under all extrusion conditions examined. It was fUliher revealed that the m-LLDPE undergoes a higher extent of melt fracture, the onset of which occurs under much lower shear rates than the Ziegler-based polymer and this was attributed to its higher shear viscosity and narrower molecular weight distribution (MWD). Melt flow measurements and GPC have shown that after the first extrusion pass, the initial narrower MWD of m-LLDPE is retained (compared to z-LLDPE), but upon further multiple extrusion passes it undergoes much faster broadening of its MWD which shifts to higher Mw polymer fractions, paliicularly at the high screw speeds. The MWD of z-LLDPE polymer on the other hand shifts towards the lower Mw end. All the evidence suggest therefore the m-LLDPE undergoes predominantly cross-linking reactions under all processing conditions whereas z-LLDPE undergoes both cross-linking and chain scission reactions with the latter occurring predominantly under more severe processing conditions (higher temperatures and screw speeds, 285°CI200rpm). The stabilisation of both polymers with synergistic combinations of a hindered phenol (Irganox 1076) and a phosphite (Weston 399) at low concentrations has shown a high extent of melt stabilisation in both polymers (extrusion temperatures 210-285°C and screw speeds 50-200rpm). The best Irganox 1076/Weston 399 system was found to be at an optimum 1:4 w/w ratio, respectively and was found to be most effective in the z-LLDPE polymer. The melt stabilising effectiveness of a Vitamin E/Ultranox 626 system used at a fraction of the total concentration of Irganox 1076/Weston 399 system was found to be higher in both polymers (under all extrusion conditions). It was found that AOs which operate primarily as alkyl (Re) radical scavengers are the most effective in inhibiting the thermal oxidative degradation of m-LLDPE in the melt; this polymer was shown to degrade in the melt primarily via alky radicals resulting in crosslinking. Metallocene polymers stabilised with single antioxidants of Irganox HP 136 (a lactone) and Irganox E201 (vitamin E) produced the highest extent of melt stability and the least discolouration during processing (260°C/1 OOrpm). Furthermore, synergistic combinations of Irganox HP I 36/Ultranox 626 (XP-60) system produced very high levels of melt and colour stability (comparable to the Vitamin E based systems) in the mLLDPE polymer. The addition of Irganox 1076 to an Irganox HP 136/Ultranox 626 system was found not to result in increasing melt stability but gave rise to increasing discolouration of the m-LLDPE polymer. The blending of a hydroxylamine (lrgastab FS042) with a lactone and Vitamin E (in combination with a phosphite) did not increase melt stability but induced severe discolouration of resultant polymer samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problems associated with x-ray-transparent denture base are defined and conventional approaches to their solution are assessed. Consideration of elemental absorption parameters leads to the postulation that atoms such as zinc, and bromine, may be effective radiopacifiers over at least part of the clinical x-ray spectrum. These elements had hitherto been considered too light to be effective. Investigation of copolymers of methylmethacrylate and p-bromostyrene revealed no deleterious effects arising from the aromatically brominated monomer (aliphatic bromination caused UV destabilisation). For effective x-ray absorption a higher level of bromination would be necessary, but the expense of suitable compounds made further study unjustifiable. Incorporation of zinc atoms into the polymer was accomplished by copolymerisation of zinc acrylate with methylmethacrylate in solution. At high zinc levels this produced a powder copolymer convenient for addition to dental polymers in the dough moulding process. The resulting mouldings showed increasing brittleness at high loadings of copolymer. Fracture was shown to be through the powder particles rather than around them, indicating the source of weakness to be in the internal structure of the copolymer. The copolymer was expected to be cross-linked through divalent zinc ions and its insolubility and infusibility supported this. Cleavage of the ionic cross links with formic acid produced a zinc-free linear copolymer of high molecular weight. Addition of low concentrations of acrylic acid to the dough moulding monomer appeared to 'labilise' the cross links producing a more homogeneous moulding with adequate wet strength. Toxicologically the zinc-containing materials are satisfactory and though zinc is extracted at a measurable rate in an aqueous system, this is very small and should be acceptable over the life of a denture. In other respects the composite is quite satisfactory and though a marketable product is not claimed the system is considered worthy of further study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Septic shock can occur as a result of Gram-negative or Gram-positive infection and involves a complex interaction between bacterial factors and the host immune system producing a systemic inflammatory state that may progress to multiple organ failure and death. Gram-positive bacteria are increasingly becoming more prevalent especially Staphylococcus epidermidis in association with indwelling devices. Lipopolysaccaride (LPS) is the key Gram-negative component involved in this process, but it is not clear which components of Gram-positive bacteria are responsible for progression of this often fatal disease. The aim of this thesis was to investigate the effect of bacterial components on the immune systems. Lipid S, a short chain form of lipoteichoic acid (LTA) found to be excreted from bacteria during growth in culture medium was examined along with other Gram-positive cell wall components: LTA, peptidoglycan (PG) and wall teichoic acids (WTA) and LPS from Gram-negative bacteria. Lipid S, LTA, PG and LPS but not WTA all stimulated murine macrophages and cell lines to produce significant amounts of NO, TNF-a, IL-6 and IL-1 and would induce fever and tissue damage seen in inflammatory diseases. Lipid S proved to be the most potent out of the Gram-positive samples tested. IgG antibodies in patients serum were found to bind to and cross react with lipid S and LTA. Anti-inflammatory antibiotics, platelet activating factor (PAF), PAF receptor antagonists and monoclonal antibodies (mAbs) directed to LTA, CD14 and toll-like receptors were utilised to modulate cytokine and NO production. In cell culture the anti-LTA and the anti-CD14 mAbs failed to markedly attenuate the production of NO, TNF-a, IL-6 or IL-1, the anti-TLR4 antibody did greatly inhibit the ability of LPS to stimulate cytokine production but not lipid S. The tetracyclines proved to be the most effective compounds, many were active at low concentrations and showed efficacy to inhibit both lipid S and LPS stimulated macrophages to produce NO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nutritional requirements for the vegetative growth of B. stearothermophilus strains NCIB 8919, NCTC lO,OO3 (wild) were found to be DL-methionine, biotin, nicotinic acid, thiamin, glucose and mineral salts. Strains NCIB 8920 required in addition L-tryptophan. B. stearothermophilus NCTC lO,OO3 (mutant) grew in a medium containing only glucose and mineral salts. Separate chemically defined media for the growth of Bacillus stearothermophilus strains NCIB 8919, 8920, NCTC lO,OO3 (wild) and NCTC lO,OO3 (mutant) were developed. Optimally aerated culture of B. stearothermonhilus NCTC lO,OO3(mutant) required 1.0 x 10-4 M. Mn2+ and 2.4 x 10-3 M. glutamic acid for optimal sporulation. Specific nutrient depletion of growth affected percentage sporulation. Spore suspensions of B. stearothermophilus NCTC 10,003 (mutant) were prepared from media in which sulphate (SO4-), nitrogen (N-),phosphate (Po4-), carbon (C-), magnesium-carbon simultaneously (Ng-C-) depleted growth. The heat resistance, dormancy and chemistry of these spores varied considerably. B. stearothermophilus NCTC 10,003 10,00310,00(mutant) spores prepared from carbon depleted cultures containing high and low concentrations of calcium, iron or manganese showed variations in heat resistance,dormancy and chemical composition. Progressive increase in the concentration of medium calciumfrom 1.0 X 10-5  M to 1.4 X 10-4 M. progressively increased theheat resistance of B. stearothermophilus NCTC 10,003 (mutant) spores prepared from nitrogen depleted cultures (N-). The thermodynamic functions for germination rate, magnesium and manganese release of N- and SO4- spores were within the range expected of enzymic reactions. The thermodynamic functions for the breaking of dormancy in SO4- spores and that for the release of D.P.A. were identical. Sublethal heating of SO4- spores (96.5°C and below) induced dormancy in these spores, whereas heating above 96.5°C gave rise to heat activation. Pooled results of the chemical analyses of all spore types studied showed that the concentration of D.P.A. and calcium were positively related to heat resistance whereas magnesium concentration and Mg/Ca molar ratio were inversely proportional to heat resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The adsorption of nonionic surface active agents of polyoxyethylene glycol monoethers of n hexadecanols on polystyrene latex and nonionic cellulose polymers of hydroxyethyl cellulose, hydroxypropyl cellulose and hydroxypropyl methylcellulose on polystyrene latex and ibuprofen drug particles have been studied. The adsorbed layer thicknesses were determined by means of microelectrophoretic and viscometric methods. The conformation of the adsorbed molecules at the solid-liquid interface was deduced from the molecular areas and the adsorbed layer thicknesses. Comparison of the adsorption results obtained from polystyrene latex and ibuprofen particles was made to explain the conformation difference between these two adsorbates. Sedimentation volumes and redispersibility values were the main criteria used to evaluate suspension stability. At low concentrations of surface active agents, hard caked suspensions were found, probably due to the attraction between the uncoated areas or, the mutual adsorption of the adsorbed molecules on the bare surface of the particles in the sediment. At high concentrations of hydroxypropyl cellulose and hydroxypropyl methylcellulose, heavily caked sediments were attributed to network structure formation by the adsorbed molecules. An attempt was made to relate the characteristics of the suspensions to the potential energy of interaction curves. Generally, the agreement between theory and experiment was good, but for hydroxyethyl cellulose-ibuprofen systems discrepancies were found. Experimental studies showed that hydroxyethyl cellulose flocculated polystyrene latex over a rather wide range of concentrations; similarly, hydroxyethyl cellulose-ibuprofen suspensions were also flocculated. Therefore, it ls suggested that a term to account for flocculation energy of the polymer should be added to the total energy of interaction. A rheometric method was employed to study the flocculation energy of the polymer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to use extremely low concentrations of free radical generating compounds as a 'catalyst' to trigger endogenous free radical chain reactions in the host and to selectively eliminate neoplastic cells in the host. To test the hypothesis, a number of free radical generating compounds were screened on several malignant cell lines in vitro to select model compounds that were used against tumour models in vivo. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and its derivatives were selected at the model compounds for in vivo experiments in view of their high cytotoxic potency against several malignant cell lines in vitro. The water soluble derivative, 2,2-diphenyl-1-(2', 4'-dinitro-6'-sulphophenyl) hydrazyl (DDSH) given by subcutaneous injections demonstrated significant antitumour activities against the MAC 16 murine colon adenocarcinoma implanted subcutaneously in male NMRI mice at nanomolar concentration range. 40-60% of long term survival of over 60 days was achieved (compared with control survival of 20 days) with total tumour elimination. This compound was also active against both P388 leukaemia in male BDF1 mice and TLX5 lymphoid tumour in male CBA/CA mice at a similar concentration range. However, some of these animals died suddenly after treatment with no evidence of disease present at post mortem. The cause of death was unknown but thought to be related to the treatment. There was significant increase in serum level of malondialdehyde (MDA) following treatment, but did not correlate to the antitumour activities of these compounds. Induction of supcroxide dismutase (SOD), and glutathione peroxidase (GPx) occurred around day 8 after the administration of DDSH. Histological sections of MAC16 tumours showed areas of extensive massive haemorrhagic necrosis and vascular collapse associated with perivascular cell death following the administration of nanomolar concentration of DDSH which was probably compatible with the effects of free radicals. It was concluded that the antitumour activities of these compounds may be related to free radical and cytokine production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The incubation of murine leukaemic L1210 cells in vitro for 4 hours (hr) with 10uM nitrogen mustard (HN2), a bifunctional alkylating agent, inhibited the influx of the potassium congener, 88rubidium+ ( 86Rb+) by the selective inhibition of the Na+-K+-CI- cotransporter. The aim of this project was to investigate the importance of this lesion in HN2-induced cytotoxicity. 86Rb+ uptake in human erythrocytes was inhibited by high concentrations of HN2 (2mM) and occurred in two phases.In the first hour both the Na+/K+ ATPase pump and the Na+-K+-CI- cotransporter were equally inhibited but after 2 hrs exposure to 2mM HN2, the Na+ -K+ -CI- cotransporter was significantly more inhibited than the Na+/K+ ATPase pump. In contrast, both potassium transport systems were equally inhibited in L1210 cells incubated for 10 minutes with 1mM HN2. The selective inhibition of the Na+-K+-CI- cotransporter, after a 3 hrs exposure to 10uM HN2, was not absolved by coincubation with 5ug/ml cycloheximide (CHX), an inhibitor of protein synthesis. Incubation of L1210 cells with concentrations of diuretics which completely inhibited Na+-K+-CI- cotransport did not enhance the cytotoxicity of either HN2 or its monofunctional analogue 2-chloroethyldimethylamine (Me-HN1). The incubation of L1210 cells with a twice strength Rosewell Park Memorial Institute 1640 media did not enhance the toxicity of HN2. An L1210 cell line (L1210FR) was prepared which was able to grow in toxic concentrations of furosemide and exhibited a similiar sensitivity to HN2 as parental L1210 cells. Treatment of L1210 cells with 10uM HN2 resulted in a decrease in cell volume which was concurrent with the inhibition of the Na+-K+-CI- cotransporter. This was not observed in L1210 cells treated with either 1 or O.SuM HN2. Thus, possible differences in the cell death, in terms of necrosis and apoptosis, induced by the different concentrations of HN2 was investigated. The cell cycle of L1210 cells appeared to be blocked non-specifically by 10uM HN2 and in S and G2/M by either 1 or 0.5uM HN2. There were no significant changes in the cytosolic calcium concentrations of L1210 cells for up to 48 hrs after exposure to the three concentrations of HN2. No protection against th_ toxic effects of HN2 was observed in L1210 cells incubated with 5ug/ml CHX for up to 6 hrs. Incubation for 12 or 18 hrs with a non-toxic concentration (5mM) of L-Azetidine-2- carboxylic acid (ACA) enhanced the toxicity of low concentrations (<0.5uM) of HN2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A variety of islet microencapsulation techniques have been investigated to establish which method provides the least occlusive barrier to net insulin release in vitro, and optimum biocompatibility for islet implantation in vivo. NMRI mouse islets have been microencapsulated with Na+ -alginate-poly-L-lysine (PLL)/poly-L-ornithine (PLO)-alginate, Ba2+ -alginate and agarose gels. Both free and microencapsulated islets responded to glucose challenge in static incubation and perifusion by significantly increasing their rate of insulin release and theophylline significantly potentiated the insulin response to glucose. While little insulin was released from microencapsulated islets after short term (2 hours) static incubation, significantly greater amounts were released in response to glucose challenge after extended (8-24 hours) incubation. However, insulin release from all types of microencapsulated islets was significantly reduced compared with free islets. Na+ -alginate-PLO-alginate microencapsulated islets were significantly more responsive to elevated glucose than Na+ -alginate-PLL-alginate microencapsulated islets, due to the enhanced porosity of PLO membranes. The outer alginate layer created a significant barrier to glucose/insulin exchange and reduced the insulin responsiveness of microencapsulated islets to glucose. Ba2+ -alginate membrane coated islets, generated by the density gradient method, were the most responsive to glucose challenge. Low concentrations of NG-monomethyl L-arginine (L-NMMA) had no significant effect on glucose stimulated insulin release from either free or microencapsulated islets. However, 1.0 mmol/1 L-NMMA significantly inhibited the insulin response of both free and microencapsulated islets to glucose challenge. In vivo work designed to evaluate the extent of pericapsular fibrosis after 28 days ip. and sc. implantation of microencapsulated islets into STZ-diabetic recipients, revealed that the inclusion of islets within microcapsules increased their immunogenicity and markedly increased the extent of pericapsular fibrosis. When the outer alginate layer was omitted from microcapsules, little or no pericapsular mononuclear cell deposition was observed. The subcutaneous site was not suitable for microencapsulated islet transplantation in NMRI recipient mice. Systemic immunosuppression using cyclosporin A was effective in preventing pericapsular mononuclear cell deposition, while L-NMMA loading into microcapsules had no significant effect on pericapsular fibrosis, although it did maintain the integrity of microencapsulated islets.