10 resultados para Lotka-Volterra

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation-deactivation pseudo-equilibrium coefficient Qt and constant K0 (=Qt x PaT1,t = ([A1]x[Ox])/([T1]x[T])) as well as the factor of activation (PaT1,t) and rate constants of elementary steps reactions that govern the increase of Mn with conversion in controlled cationic ring-opening polymerization of oxetane (Ox) in 1,4-dioxane (1,4-D) and in tetrahydropyran (THP) (i.e. cyclic ethers which have no homopolymerizability (T)) were determined using terminal-model kinetics. We show analytically that the dynamic behavior of the two growing species (A1 and T1) competing for the same resources (Ox and T) follows a Lotka-Volterra model of predator-prey interactions. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OpenMI is a widely used standard allowing exchange of data between integrated models, which has mostly been applied to dynamic, deterministic models. Within the FP7 UncertWeb project we are developing mechanisms and tools to support the management of uncertainty in environmental models. In this paper we explore the integration of the UncertWeb framework with OpenMI, to assess the issues that arise when propagating uncertainty in OpenMI model compositions, and the degree of integration possible with UncertWeb tools. In particular we develop an uncertainty-enabled model for a simple Lotka-Volterra system with an interface conforming to the OpenMI standard, exploring uncertainty in the initial predator and prey levels, and the parameters of the model equations. We use the Elicitator tool developed within UncertWeb to identify the initial condition uncertainties, and show how these can be integrated, using UncertML, with simple Monte Carlo propagation mechanisms. The mediators we develop for OpenMI models are generic and produce standard Web services that expose the OpenMI models to a Web based framework. We discuss what further work is needed to allow a more complete system to be developed and show how this might be used practically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reconfigurable nonlinear equalizer (RNLE) based on inverse Volterra series transfer function is proposed for dual-polarization (DP) and multiband coherent optical orthogonal frequency-division multiplexing (OFDM) signals. It is shown that the RNLE outperforms by 2 dB the linear equalization in a 260-Gb/s DP-OFDM system at 1500 km. The RNLE improves the tolerance to inter/intraband nonlinearities, being independent on polarization tributaries, modulation format, signal bit rate, subcarrier number, and distance. © 1989-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modern electronic nonlinearity equalizer (NLE) based on inverse Volterra series transfer function (IVSTF) with reduced complexity is applied on coherent optical orthogonal frequency-division multiplexing (CO-OFDM) signals for next-generation long- and ultra-long-haul applications. The OFDM inter-subcarrier crosstalk effects are explored thoroughly using the IVSTF-NLE and compared with the case of linear equalization (LE) for transmission distances of up to 7000 km. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One major drawback of coherent optical orthogonal frequency-division multiplexing (CO-OFDM) that hitherto remains unsolved is its vulnerability to nonlinear fiber effects due to its high peak-to-average power ratio. Several digital signal processing techniques have been investigated for the compensation of fiber nonlinearities, e.g., digital back-propagation, nonlinear pre- and post-compensation and nonlinear equalizers (NLEs) based on the inverse Volterra-series transfer function (IVSTF). Alternatively, nonlinearities can be mitigated using nonlinear decision classifiers such as artificial neural networks (ANNs) based on a multilayer perceptron. In this paper, ANN-NLE is presented for a 16QAM CO-OFDM system. The capability of the proposed approach to compensate the fiber nonlinearities is numerically demonstrated for up to 100-Gb/s and over 1000km and compared to the benchmark IVSTF-NLE. Results show that in terms of Q-factor, for 100-Gb/s at 1000km of transmission, ANN-NLE outperforms linear equalization and IVSTF-NLE by 3.2dB and 1dB, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel artificial neural network (ANN)-based nonlinear equalizer (NLE) of low complexity is demonstrated for 40-Gb/s CO-OFDM at 2000 km, revealing ∼1.5 dB enhancement in Q-factor compared to inverse Volterra-series transfer function based NLE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with the measurement of the characteristics of nonlinear systems by crosscorrelation, using pseudorandom input signals based on m sequences. The systems are characterised by Volterra series, and analytical expressions relating the rth order Volterra kernel to r-dimensional crosscorrelation measurements are derived. It is shown that the two-dimensional crosscorrelation measurements are related to the corresponding second order kernel values by a set of equations which may be structured into a number of independent subsets. The m sequence properties determine how the maximum order of the subsets for off-diagonal values is related to the upper bound of the arguments for nonzero kernel values. The upper bound of the arguments is used as a performance index, and the performance of antisymmetric pseudorandom binary, ternary and quinary signals is investigated. The performance indices obtained above are small in relation to the periods of the corresponding signals. To achieve higher performance with ternary signals, a method is proposed for combining the estimates of the second order kernel values so that the effects of some of the undesirable nonzero values in the fourth order autocorrelation function of the input signal are removed. The identification of the dynamics of two-input, single-output systems with multiplicative nonlinearity is investigated. It is shown that the characteristics of such a system may be determined by crosscorrelation experiments using phase-shifted versions of a common signal as inputs. The effects of nonlinearities on the estimates of system weighting functions obtained by crosscorrelation are also investigated. Results obtained by correlation testing of an industrial process are presented, and the differences between theoretical and experimental results discussed for this case;

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally demonstrate ∼2 dB quality (Q)-factor enhancement in terms of fiber nonlinearity compensation of 40 Gb/s 16 quadrature amplitude modulation coherent optical orthogonal frequency-division multiplexing at 2000 km, using a nonlinear equalizer (NLE) based on artificial neural networks (ANN). Nonlinearity alleviation depends on escalation of the ANN training overhead and the signal bit rate, reporting ∼4 dB Q-factor enhancement at 70 Gb/s, whereas a reduction of the number of ANN neurons annihilates the NLE performance. An enhanced performance by up to ∼2 dB in Q-factor compared to the inverse Volterra-series transfer function NLE leads to a breakthrough in the efficiency of ANN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel versatile digital signal processing (DSP)-based equalizer using support vector machine regression (SVR) is proposed for 16-quadrature amplitude modulated (16-QAM) coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and experimentally compared to traditional DSP-based deterministic fiber-induced nonlinearity equalizers (NLEs), namely the full-field digital back-propagation (DBP) and the inverse Volterra series transfer function-based NLE (V-NLE). For a 40 Gb/s 16-QAM CO-OFDM at 2000 km, SVR-NLE extends the optimum launched optical power (LOP) by 4 dB compared to V-NLE by means of reduction of fiber nonlinearity. In comparison to full-field DBP at a LOP of 6 dBm, SVR-NLE outperforms by ∼1 dB in Q-factor. In addition, SVR-NLE is the most computational efficient DSP-NLE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a novel low-complexity artificial neural network (ANN)-based nonlinear equalizer (NLE) for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and compare it with the recent inverse Volterra-series transfer function (IVSTF)-based NLE over up to 1000 km of uncompensated links. Demonstration of ANN-NLE at 80-Gb/s CO-OFDM using 16-quadrature amplitude modulation reveals a Q-factor improvement after 1000-km transmission of 3 and 1 dB with respect to the linear equalization and IVSTF-NLE, respectively.