6 resultados para Longitudinal, fundamental movement skill
em Aston University Research Archive
Resumo:
It has long been sought to measure ocular accommodation continuously in human factor applications such as driving or flying. Open-field autorefractors such as the Canon R-1 could be converted to allow continuous, objective recording, but steady eye fixation and head immobilisation were essential for the measurements to be valid. Image analysis techniques utilised by newer open-view autorefractors such as the Shin-Nippon SRW-5000 are more tolerant to head and eye movements, but perhaps the technique with the greatest potential for the measurement of accommodation in human factor applications is photoretinoscopy. This paper examines the development of techniques for high temporal measurements of accommodation and reports on the tolerance of one such recent commercial instrument, the PowerRefractor (PlusOptiX). The instrument was found to be tolerant to eye movements from the optical axis of the instrument (∼0.50 DS change in apparent accommodation with gaze 25° eccentric to the optical axis), longitudinal head movement (<0.25 DS from 8 cm towards and 20 cm away from the correct photorefractor to eye distance) and changes in background illuminance (<0.25 DS from 0.5 to 20 cd m-2 target luminance). The PowerRefractor also quantifies the direction of gaze and pupil size, but is unable to take measurements with small pupils <3.7 ±1.0 mm. © 2002 The College of Optometrists.
Resumo:
This thesis examines relations between the French Confederation Generale du Travail (CGT) and the labour movements of other countries in the years leading up to the First World War. The aim of the study is to examine the CGT's policy of internationalism in practice, both in relations with other labour movements and in its membership of the International Secretariat of National Trade Union Centres (between 1900 and 1914). In particular, the relationship between the French and German labour movements is explored in the light of the events of August 1914. This study shows that the relationship was a reflection of the respective positions of the French and German labour movements in the international movement. It also subjects to close scrutiny the assumption, widely made before 1914, that workers had more in common with each other than with the ruling classes of their own country, by analysing the extent of, and the reasons for internationalism and international cooperation in the labour movement. As a study of the International Secretariat of National Trade Union Centres, an organisation about which very little has previously been written, this thesis complements existing work on the international labour movement prior to 1914. It also provides new insights into the French CGT by concentrating on the fundamental areas of internationalism and opposition to war, and offers fresh contributions to the continuing debate on the international labour movement and its response to the outbreak of war.
Resumo:
A re-examination of fundamental concepts and a formal structuring of the waveform analysis problem is presented in Part I. eg. the nature of frequency is examined and a novel alternative to the classical methods of detection proposed and implemented which has the advantage of speed and independence from amplitude. Waveform analysis provides the link between Parts I and II. Part II is devoted to Human Factors and the Adaptive Task Technique. The Historical, Technical and Intellectual development of the technique is traced in a review which examines the evidence of its advantages relative to non-adaptive fixed task methods of training, skill assessment and man-machine optimisation. A second review examines research evidence on the effect of vibration on manual control ability. Findings are presented in terms of percentage increment or decrement in performance relative to performance without vibration in the range 0-0.6Rms'g'. Primary task performance was found to vary by as much as 90% between tasks at the same Rms'g'. Differences in task difficulty accounted for this difference. Within tasks vibration-added-difficulty accounted for the effects of vibration intensity. Secondary tasks were found to be largely insensitive to vibration except secondaries which involved fine manual adjustment of minor controls. Three experiments are reported next in which an adaptive technique was used to measure the % task difficulty added by vertical random and sinusoidal vibration to a 'Critical Compensatory Tracking task. At vibration intensities between 0 - 0.09 Rms 'g' it was found that random vibration added (24.5 x Rms'g')/7.4 x 100% to the difficulty of the control task. An equivalence relationship between Random and Sinusoidal vibration effects was established based upon added task difficulty. Waveform Analyses which were applied to the experimental data served to validate Phase Plane analysis and uncovered the development of a control and possibly a vibration isolation strategy. The submission ends with an appraisal of subjects mentioned in the thesis title.
Resumo:
The research developed in this thesis explores the sensing and inference of human movement in a dynamic way, as opposed to conventional measurement systems, that are only concerned with discrete evaluations of stimuli in sequential time. Typically, conventional approaches are used to infer the dynamic movement of the body; such as vision and motion tracking devices, with either a human diagnosis or complex image processing algorithm to classify the movement. This research is therefore the first of its kind to attempt and provide a movement classifying algorithm through the use of minimal sensing points, with the application for this novel system, to classify human movement during a golf swing. There are two main categories of force sensing. Firstly, array-type systems consisting of many sensing elements, and are the most commonly researched and commercially available. Secondly, reduced force sensing element systems (RFSES) also known as distributive systems have only been recently exploited in the academic world. The fundamental difference between these systems is that array systems handle the data captured from each sensor as unique outputs and suffer the effects of resolution. The effect of resolution, is the error in the load position measurement between sensing elements, as the output is quantized in terms of position. This can be compared to a reduced sensor element system that maximises that data received through the coupling of data from a distribution of sensing points to describe the output in discrete time. Also this can be extended to a coupling of transients in the time domain to describe an activity or dynamic movement. It is the RFSES that is to be examined and exploited in the commercial sector due to its advantages over array-based approaches such as reduced design, computational complexity and cost.
Resumo:
Just-in-time (JIT) production systems are increasingly being seen as a vital way for manufacturing organizations to enhance their competitiveness. A number of commentators have suggested that this will simplify jobs and reduce employee well-being. This paper presents a conceptual framework for interpreting the effects of JIT and reports findings from a study of the impact of JIT on the content of workers'jobs and on job satisfaction and psychological strain. The introduction of JIT led to a reduction in control over work timing, an increase in production pressure, and a drop in job satisfaction. Contrary to claims in the literature, no changes were found in control over work methods, other aspects of cognitive demands and skill use, and in psychological strain. The study shows that JIT can be implemented without radical changes in job content or adverse impact in terms of employee strain, and the implications of these findings are discussed.
Resumo:
Along with other diseases that can affect binocular vision, reducing the visual quality of a subject, Congenital Nystagmus (CN) is of peculiar interest. CN is an ocular-motor disorder characterized by involuntary, conjugated ocular oscillations and, while identified more than forty years ago, its pathogenesis is still under investigation. This kind of nystagmus is termed congenital (or infantile) since it could be present at birth or it can arise in the first months of life. The majority of CN patients show a considerable decrease of their visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations, mainly horizontal. However, the image of a given target can still be stable during short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals). To quantify the extent of nystagmus, eye movement recordings are routinely employed, allowing physicians to extract and analyze nystagmus main features such as waveform shape, amplitude and frequency. Use of eye movement recording, opportunely processed, allows computing "estimated visual acuity" predictors, which are analytical functions that estimate expected visual acuity using signal features such as foveation time and foveation position variability. Hence, it is fundamental to develop robust and accurate methods to measure both those parameters in order to obtain reliable values from the predictors. In this chapter the current methods to record eye movements in subjects with congenital nystagmus will be discussed and the present techniques to accurately compute foveation time and eye position will be presented. This study aims to disclose new methodologies in congenital nystagmus eye movements analysis, in order to identify nystagmus cycles and to evaluate foveation time, reducing the influence of repositioning saccades and data noise on the critical parameters of the estimation functions. Use of those functions extends the information acquired with typical visual acuity measurement (e.g., Landolt C test) and could be a support for treatment planning or therapy monitoring. © 2010 by Nova Science Publishers, Inc. All rights reserved.