36 resultados para Localisation spatiale

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We sought to determine the extent to which colour (and luminance) signals contribute towards the visuomotor localization of targets. To do so we exploited the movement-related illusory displacement a small stationary window undergoes when it has a continuously moving carrier grating behind it. We used drifting (1.0-4.2 Hz) red/green-modulated isoluminant gratings or yellow/black luminance-modulated gratings as carriers, each curtailed in space by a stationary, two-dimensional window. After each trial, the perceived location of the window was recorded with reference to an on-screen ruler (perceptual task) or the on-screen touch of a ballistic pointing movement made without visual feedback (visuomotor task). Our results showed that the perceptual displacement measures were similar for each stimulus type and weakly dependent on stimulus drift rate. However, while the visuomotor displacement measures were similar for each stimulus type at low drift rates (<4 Hz), they were significantly larger for luminance than colour stimuli at high drift rates (>4 Hz). We show that the latter cannot be attributed to differences in perceived speed between stimulus types. We assume, therefore, that our visuomotor localization judgements were more susceptible to the (carrier) motion of luminance patterns than colour patterns. We suggest that, far from being detrimental, this susceptibility may indicate the operation of mechanisms designed to counter the temporal asynchrony between perceptual experiences and the physical changes in the environment that give rise to them. We propose that perceptual localisation is equally supported by both colour and luminance signals but that visuomotor localisation is predominantly supported by luminance signals. We discuss the neural pathways that may be involved with visuomotor localization. © 2007 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, we introduced a new 'GLM-beamformer' technique for MEG analysis that enables accurate localisation of both phase-locked and non-phase-locked neuromagnetic effects, and their representation as statistical parametric maps (SPMs). This provides a useful framework for comparison of the full range of MEG responses with fMRI BOLD results. This paper reports a 'proof of principle' study using a simple visual paradigm (static checkerboard). The five subjects each underwent both MEG and fMRI paradigms. We demonstrate, for the first time, the presence of a sustained (DC) field in the visual cortex, and its co-localisation with the visual BOLD response. The GLM-beamformer analysis method is also used to investigate the main non-phase-locked oscillatory effects: an event-related desynchronisation (ERD) in the alpha band (8-13 Hz) and an event-related synchronisation (ERS) in the gamma band (55-70 Hz). We show, using SPMs and virtual electrode traces, the spatio-temporal covariance of these effects with the visual BOLD response. Comparisons between MEG and fMRI data sets generally focus on the relationship between the BOLD response and the transient evoked response. Here, we show that the stationary field and changes in oscillatory power are also important contributors to the BOLD response, and should be included in future studies on the relationship between neuronal activation and the haemodynamic response. © 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work sets out to evaluate the potential benefits and pit-falls in using a priori information to help solve the Magnetoencephalographic (MEG) inverse problem. In chapter one the forward problem in MEG is introduced, together with a scheme that demonstrates how a priori information can be incorporated into the inverse problem. Chapter two contains a literature review of techniques currently used to solve the inverse problem. Emphasis is put on the kind of a priori information that is used by each of these techniques and the ease with which additional constraints can be applied. The formalism of the FOCUSS algorithm is shown to allow for the incorporation of a priori information in an insightful and straightforward manner. In chapter three it is described how anatomical constraints, in the form of a realistically shaped source space, can be extracted from a subject’s Magnetic Resonance Image (MRI). The use of such constraints relies on accurate co-registration of the MEG and MRI co-ordinate systems. Variations of the two main co-registration approaches, based on fiducial markers or on surface matching, are described and the accuracy and robustness of a surface matching algorithm is evaluated. Figures of merit introduced in chapter four are shown to given insight into the limitations of a typical measurement set-up and potential value of a priori information. It is shown in chapter five that constrained dipole fitting and FOCUSS outperform unconstrained dipole fitting when data with low SNR is used. However, the effect of errors in the constraints can reduce this advantage. Finally, it is demonstrated in chapter six that the results of different localisation techniques give corroborative evidence about the location and activation sequence of the human visual cortical areas underlying the first 125ms of the visual magnetic evoked response recorded with a whole head neuromagnetometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 19 channel Neuromagnetometer system in the Clinical Neurophysiology Unit at Aston University is a multi-channel system, unique in the United Kingdom. A bite bar head localisation and MRI co-registration strategy which enabled accurate and reproducible localisation of MEG data into cortical space was developed. This afforded the opportunity to study magnetic fields of the human cortex generated by stimulation of peripheral nerve, by stimulation of visceral sensory receptors and by those evoked through voluntary finger movement. Initially, a study of sensory-motor evoked data was performed in a healthy control population. The techniques developed were then applied to patients who were to undergo neurosurgical intervention for the treatment of epilepsy and I or space occupying lesions. This enabled both validation of the effective accuracy of source localisation using MEG as well as to determine the clinical value of MEG in presurgical assessment of functional localisation in human cortex. The studies in this thesis have demonstrated that MEG can repeatedly and reliably locate sources contained within a single gyrus and thus potentially differentiate between disparate gyral activation. This ability is critical in the clinical application of any functional imaging technique; which is yet to be fully validated by any other 'non-invasive' functional imaging methodology. The technique was also applied to the study of visceral sensory representation in the cortex which yielded important data about the multiple cortical representation of visceral sensory function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Vascular endothelial growth factor (VEGF) mediates endothelial cell mitogenesis and enhances vascular permeability. The existence of single or multiple VEGF isoforms and receptors suggests that these proteins may have overlapping but distinct functions, which may be reflected in their cell expression and distribution. Methods: The localisation of VEGFs A–C and their receptors (VEGFRs 1–3, respectively) in 30 fresh human atherosclerotic arteries, 15 normal uterine arteries, and 15 saphenous veins using immunohistochemistry and western blotting. Results: Saphenous veins showed no staining for VEGF-B or VEGFR-2. Smooth muscle cells (SMCs) showed the strongest staining for VEGF-A, VEGF-B, VEGFR-1, and VEGFR-2 in all specimens. Conversely, VEGFR-3 and VEGF-C were predominately localised to the endothelial vasa vasorum in normal arteries, whereas medial SMCs showed the strongest staining in atherosclerotic arteries. Western blotting showed variations in VEGF protein localisation, with lower amounts of VEGF-B and VEGF-C in saphenous veins, compared with arterial tissue. Amounts of VEGF-C were lower than those of VEGF-A and VEGF-B in all specimens. Conclusion: This study provides direct evidence of the presence of VEGF proteins and receptors in human physiology and pathology, with variations in both the amounts of VEGF proteins expressed and their cellular distribution in normal arteries compared with atherosclerotic arteries. The presence of VEGFs A–C and their receptors in normal arterial tissue implies that VEGF functions may extend beyond endothelial cell proliferation. Reduced VEGFR-2 staining in atherosclerotic arteries may have implications for the atherosclerosis process and the development of vascular disease and its complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is estimated that 69-75 million people worldwide will suffer a traumatic brain injury (TBI) or stroke each year. Brain oedema caused by TBI or following a stroke, together with other disorders of the brain cost Europe €770 billion in 2014. Aquaporins (AQP) are transmembrane water channels involved in many physiologies and are responsible for the maintenance of water homeostasis. They react rapidly to changes in osmolarity by transporting water through their highly selective central pore to maintain tonicity and aid in cell volume regulation. We have previously shown that recombinant AQP1-GFP trafficking occurs in a proteinkinase C-microtubule dependant manner in HEK-293 cells in response to hypotonicity. This trafficking mechanism is also reliant on the presence of calcium and its messenger-binding protein calmodulin and results in increased cell surface expression of AQP1 in a time-scale of ~30 seconds. There is currently very little research into the trafficking mechanisms of endogenous AQPs in primary cells. AQP4 is the most abundantly expressed AQP within the brain, it is localised to the astrocytic end-feet, in contact with the blood vessels at the blood-brain-barrier. In situations where the exquisitely-tuned osmotic balance is disturbed, high water permeability can become detrimental. AQP4-mediated water influx causes rapid brain swelling, resulting in death or long term brain damage. Previous research has shown that AQP4 knock-out mice were protected from the formation of cytotoxic brain oedema in a stroke model, highlighting AQP4 as a key drug target for this pathology. As there are currently no treatments available to restrict the flow of water through AQP4 as all known inhibitors are either cytotoxic or non-specific, controlling the mechanisms involved in the regulation of AQP4 in the brain could provide a therapeutic solution to such diseases. Using cell surface biontinylation of endogenous AQP4 in primary rat astrocytes followed by neutraavidin based ELISA we have shown that AQP4 cell surface localisation increases by 2.7 fold after 5 minutes hypotonic treatment at around 85 mOsm/kg H2O. We have also shown that this rapid relocalisation of AQP4 is regulated by PKA, calmodulin, extra-cellular calcium and actin. In summary we have shown that rapid translocation of endogenous AQP4 occurs in primary rat astrocytes in response to hypotonic stimuli; this mechanism is PKA, calcium, actin and calmodulin dependant. AQP4 has the potential to provide a treatment for the development of brain oedema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The auditory evoked N1m-P2m response complex presents a challenging case for MEG source-modelling, because symmetrical, phase-locked activity occurs in the hemispheres both contralateral and ipsilateral to stimulation. Beamformer methods, in particular, can be susceptible to localisation bias and spurious sources under these conditions. This study explored the accuracy and efficiency of event-related beamformer source models for auditory MEG data under typical experimental conditions: monaural and diotic stimulation; and whole-head beamformer analysis compared to a half-head analysis using only sensors from the hemisphere contralateral to stimulation. Event-related beamformer localisations were also compared with more traditional single-dipole models. At the group level, the event-related beamformer performed equally well as the single-dipole models in terms of accuracy for both the N1m and the P2m, and in terms of efficiency (number of successful source models) for the N1m. The results yielded by the half-head analysis did not differ significantly from those produced by the traditional whole-head analysis. Any localisation bias caused by the presence of correlated sources is minimal in the context of the inter-individual variability in source localisations. In conclusion, event-related beamformers provide a useful alternative to equivalent-current dipole models in localisation of auditory evoked responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light localisation in one-dimensional (1D) randomly disordered medium is usually characterized by randomly distributed resonances with fluctuating transmission values, instead of selectively distributed resonances with close-to-unity transmission values that are needed in real application fields. By a resonance tuning scheme developed recently, opening of favorable resonances or closing of unfavorable resonances are achieved by disorder micro-modification, both on the layered medium and the fibre Bragg grating (FBG) array. And furthermore, it is shown that those disorder-induced resonances are independently tunable. Therefore, selected resonances and arranged light localisation can be achieved via artificial disorder, and thus meet the demand of various application fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously tested the effects of high dose AA supplements on human volunteers in terms of reducing DNA damage, as a possible mechanism of the vitamin’s proposed protective effect against cancer and detected a transient, pro-oxidant effect at high doses (500 mg/day). Herein, we present evidence of a pro-oxidant effect of the vitamin when added to CCRF cells at extracellular concentrations which mimic those present in human serum in vivo (50–150AM). The activation of the transcription factor AP-1 was optimal at 100 AM AA following 3h exposure at 37jC. A minimum dose of 50 AM of AA activated NFnB but there appeared to be no dose-dependent effect. Increases of 2–3 fold were observed for both transcription factors when cells were exposed to 100 AM AA for 3h, comparing well with the pro-oxidant effect of H2O2 at similar concentrations. In parallel experiments the activation of AP-1 (binding to DNA) was potentiated when cells were pre-incubated with AA prior to exposure with H2O2. Cycloheximide pretreatment (10 Ag/ml for 15min) caused a 50% inhibition of AP-1 binding to DNA suggesting that it was due to a combination of increasing the binding of pre-existing Fos and Jun and an increase in their de novo synthesis. Cellular localisation was confirmed by immunocytochemistry using antibodies specific for c-Fos and c-Jun proteins. These results suggest that extracellular AA can elicit an intracellular stress response resulting in the activation of the oxidative stress-responsive transcription factors AP-1 and NFnB. These transcription factors are involved in the induction of genes associated with an oxidative stress response, cell cycle arrest and DNA repair confirmed by our cDNA microarray analysis (Affymetrix). This may explain the abilty for AA to appear to inhibit 8-oxodG, yet simultaneously generate another oxidative stress biomarker, 8-oxo-dA. These results suggest a completely novel DNA repair action for AA. Whether this action is relevant to our in vivo findings will be the subject of our future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several studies show that membrane transport mechanisms are regulated by signalling molecules. Recently, genome-wide screen analyses in C.elegans have enabled scientists to identify novel regulators in membrane trafficking and also signalling molecules which are found to couple with this machinery. Fibroblast growth factor (FGF) via binding to fibroblast growth factor receptor (FGFR) mediate signals which are essential in the development of an organism, patterning, cell migration and tissue homeostasis. Impaired FGFR-mediated signalling has been associated with various developmental, neoplastic, metabolic and neurological diseases and cancer. In this study, the potential role of FGFR-mediated signalling pathway as a regulator of membrane trafficking was investigated. The GFP-tagged yolk protein YP170-GFP trafficking was analysed in worms where 1) FGFR signalling cascade components were depleted by RNAi and 2) in mutant animals. From these results, it was found that the disruption of the genes egl-15 (FGFR), egl-17(FGF), let-756(FGF), sem-5, let-60, lin-45, mek-2, mpk-1 and plc-3 lead to abnormal localization of YP170-GFP, suggesting that signalling downstream of FGFR via activation of MAPK and PLC-γ pathway is regulating membrane transport. The route of trafficking was further investigated, to pinpoint which membrane step is regulated by worm FGFR, by analysing a number of GFP-tagged intracellular membrane markers in the intestine of Wild Type (WT) and FGFR mutant worms. FGFR mutant worms showed a significant difference in the localisation of several endosomal membrane markers, suggesting its regulatory role in early and recycling steps of endocytosis. Finally, the trafficking of transferrin in a mammalian NIH/3T3 cell line was investigated to identify the conservation of these membrane trafficking regulatory mechanisms between organisms. Results showed no significant changes in transferrin trafficking upon FGFR stimulation or inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used magnetoencephalography (MEG) to examine the nature of oscillatory brain rhythms when passively viewing both illusory and real visual contours. Three stimuli were employed: a Kanizsa triangle; a Kanizsa triangle with a real triangular contour superimposed; and a control figure in which the corner elements used to form the Kanizsa triangle were rotated to negate the formation of illusory contours. The MEG data were analysed using synthetic aperture magnetometry (SAM) to enable the spatial localisation of task-related oscillatory power changes within specific frequency bands, and the time-course of activity within given locations-of-interest was determined by calculating time-frequency plots using a Morlet wavelet transform. In contrast to earlier studies, we did not find increases in gamma activity (> 30 Hz) to illusory shapes, but instead a decrease in 10–30 Hz activity approximately 200 ms after stimulus presentation. The reduction in oscillatory activity was primarily evident within extrastriate areas, including the lateral occipital complex (LOC). Importantly, this same pattern of results was evident for each stimulus type. Our results further highlight the importance of the LOC and a network of posterior brain regions in processing visual contours, be they illusory or real in nature. The similarity of the results for both real and illusory contours, however, leads us to conclude that the broadband (< 30 Hz) decrease in power we observed is more likely to reflect general changes in visual attention than neural computations specific to processing visual contours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade we have seen an exponential growth of functional imaging studies investigating multiple aspects of language processing. These studies have sparked an interest in applying some of the paradigms to various clinically relevant questions, such as the identification of the cortical regions mediating language function in surgical candidates for refractory epilepsy. Here we present data from a group of adult control participants in order to investigate the potential of using frequency specific spectral power changes in MEG activation patterns to establish lateralisation of language function using expressive language tasks. In addition, we report on a paediatric patient whose language function was assessed before and after a left hemisphere amygdalo-hippocampectomy. Our verb generation task produced left hemisphere decreases in beta-band power accompanied by right hemisphere increases in low beta-band power in the majority of the control group, a previously unreported phenomenon. This pattern of spectral power was also found in the patient's post-surgery data, though not her pre-surgery data. Comparison of pre and post-operative results also provided some evidence of reorganisation in language related cortex both inter- and intra-hemispherically following surgery. The differences were not limited to changes in localisation of language specific cortex but also changes in the spectral and temporal profile of frontal brain regions during verb generation. While further investigation is required to establish concordance with invasive measures, our data suggest that the methods described may serve as a reliable lateralisation marker for clinical assessment. Furthermore, our findings highlight the potential utility of MEG for the investigation of cortical language functioning in both healthy development and pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aims: Positron emission tomography has been applied to study cortical activation during human swallowing, but employs radio-isotopes precluding repeated experiments and has to be performed supine, making the task of swallowing difficult. Here we now describe Synthetic Aperture Magnetometry (SAM) as a novel method of localising and imaging the brain's neuronal activity from magnetoencephalographic (MEG) signals to study the cortical processing of human volitional swallowing in the more physiological prone position. Methods: In 3 healthy male volunteers (age 28–36), 151-channel whole cortex MEG (Omega-151, CTF Systems Inc.) was recorded whilst seated during the conditions of repeated volitional wet swallowing (5mls boluses at 0.2Hz) or rest. SAM analysis was then performed using varying spatial filters (5–60Hz) before co-registration with individual MRI brain images. Activation areas were then identified using standard sterotactic space neuro-anatomical maps. In one subject repeat studies were performed to confirm the initial study findings. Results: In all subjects, cortical activation maps for swallowing could be generated using SAM, the strongest activations being seen with 10–20Hz filter settings. The main cortical activations associated with swallowing were in: sensorimotor cortex (BA 3,4), insular cortex and lateral premotor cortex (BA 6,8). Of relevance, each cortical region displayed consistent inter-hemispheric asymmetry, to one or other hemisphere, this being different for each region and for each subject. Intra-subject comparisons of activation localisation and asymmetry showed impressive reproducibility. Conclusion: SAM analysis using MEG is an accurate, repeatable, and reproducible method for studying the brain processing of human swallowing in a more physiological manner and provides novel opportunities for future studies of the brain-gut axis in health and disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data suggest that for TG2 to be secreted, an intact N-terminal FN binding site (for which TG2 has high affinity) is required, however interaction of TG2 with its high affinity binding partners presents both in the intracellular and extracellular space as well as with specific cell surface receptors may also be involved in this process. Using a site-directed mutagenesis approach, the effects of specific mutations of TG2 on its translocation to the cell surface and secretion into the ECM have been investigated. Mutations include those affecting FN binding (FN1), HSPGs binding (HS1, HS2) GTP/GDP binding site (GTP1, 2) as well as N-terminal and C-terminal domains (TG2 deletion mutants N, and C). By performing transglutaminase activity assays, cell surface protein biotinylation and verifying distribution of TG2 mutants in the ECM we demonstrated that one of the potential heparan sulfate binding site mutants (HS2 mutant) is secreted at the cell surface in a much reduced manner and is less deposited into the ECM than the HS1 mutant. The HS2 mutant showed a low affinity for binding to a heparin sepharose column demonstrating this mutation site may be a potential heparan binding site of TG2. Analogous peptides to this site were shown to have some efficiency in the inhibition of the binding of the FN-TG2 complex to cell surface heparan sulfates in a cell adhesion assay indicating the peptide to be representative of the novel heparin binding site within TG2. The GTP binding site mutants GTP1 and GTP2 exhibited low specific activity however, GTP2 showed more secretion to the cell surface in comparison to GTP1. The FN1 binding mutant did not greatly affect TG2 activity nor did it alter TG2 secretion at the cell surface and deposition into the ECM indicating that fibronectin binding at this site on the enzyme is not an important factor. Interestingly an intact N-terminus (?1-15) appeared to be essential for enzyme externalisation. Removal of the first 15 amino acids (N-terminal mutant) abolished TG2 secretion to the cell surface as well as deposition into the ECM. In addition it reduced the enzymes affinity for binding to heparin. In contrast, deletion of the C-terminal TG2 domain (?594-687) increased enzyme secretion to the cell surface. Consistent with the data presented in this thesis we speculate that TG2 must fulfill two requirements to be successfully secreted from cells. The findings indicate that the closed conformation of the enzyme as well as intact N-terminal tail and a novel HS binding site within the TG2 molecule are key elements for the enzyme’s localisation at the cell surface and its deposition into the extracellular matrix. The importance of understanding the interactions between TG2, heparan sulfates and other TG2 binding partners at the cell surface could have an impact on the design of novel strategies for enzyme inhibition which could be important in the control of extracellular TG2 related diseases.