3 resultados para Local fractional derivative
em Aston University Research Archive
Resumo:
Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (1st derivative) filter, or as zero-crossings in the 2nd derivative (ZCs). We tested those ideas using a stimulus that has no local peaks of gradient and no ZCs, at any scale. The stimulus profile is analogous to the Mach ramp, but it is the luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux; the luminance profile is a blurred triangle-wave. For all image-blurs tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These Mach edges correspond to peaks and troughs in the 3rd derivative. Thus Mach edges are inconsistent with many standard edge-detection schemes, but are nicely predicted by a recent model that finds edge points with a 2-stage sequence of 1st then 2nd derivative operators, each followed by a half-wave rectifier.
Resumo:
Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (first-derivative) filter, or as zero-crossings (ZCs) in the second-derivative. A variety of multi-scale models are based on this idea. We tested this approach by devising a stimulus that has no local peaks of gradient and no ZCs, at any scale. Our stimulus profile is analogous to the classic Mach-band stimulus, but it is the local luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux. The luminance profile is a smoothed triangle wave and is obtained by integrating the gradient profile. Subjects used a cursor to mark the position and polarity of perceived edges. For all the ramp-widths tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These new Mach edges correspond to peaks and troughs in the third-derivative. They are analogous to Mach bands - light and dark bars are seen where there are no luminance peaks but there are peaks in the second derivative. Here, peaks in the third derivative were seen as light-to-dark edges, troughs as dark-to-light edges. Thus Mach edges are inconsistent with many standard edge detectors, but are nicely predicted by a new model that uses a (nonlinear) third-derivative operator to find edge points.
Resumo:
Marr's work offered guidelines on how to investigate vision (the theory - algorithm - implementation distinction), as well as specific proposals on how vision is done. Many of the latter have inevitably been superseded, but the approach was inspirational and remains so. Marr saw the computational study of vision as tightly linked to psychophysics and neurophysiology, but the last twenty years have seen some weakening of that integration. Because feature detection is a key stage in early human vision, we have returned to basic questions about representation of edges at coarse and fine scales. We describe an explicit model in the spirit of the primal sketch, but tightly constrained by psychophysical data. Results from two tasks (location-marking and blur-matching) point strongly to the central role played by second-derivative operators, as proposed by Marr and Hildreth. Edge location and blur are evaluated by finding the location and scale of the Gaussian-derivative `template' that best matches the second-derivative profile (`signature') of the edge. The system is scale-invariant, and accurately predicts blur-matching data for a wide variety of 1-D and 2-D images. By finding the best-fitting scale, it implements a form of local scale selection and circumvents the knotty problem of integrating filter outputs across scales. [Supported by BBSRC and the Wellcome Trust]