42 resultados para Local Ecological Knowledge (LEK). Ethno-classification. Artisanal Fishermen
em Aston University Research Archive
Resumo:
We use an augmented version of the UK Innovation Surveys 4–7 to explore firm-level and local area openness externalities on firms’ innovation performance. We find strong evidence of the value of external knowledge acquisition both through interactive collaboration and non-interactive contacts such as demonstration effects, copying or reverse engineering. Levels of knowledge search activity remain well below the private optimum, however, due perhaps to informational market failures. We also find strong positive externalities of openness resulting from the intensity of local interactive knowledge search—a knowledge diffusion effect. However, there are strong negative externalities resulting from the intensity of local non-interactive knowledge search—a competition effect. Our results provide support for local initiatives to support innovation partnering and counter illegal copying or counterfeiting. We find no significant relationship between either local labour quality or employment composition and innovative outputs.
Resumo:
Retrospective clinical data presents many challenges for data mining and machine learning. The transcription of patient records from paper charts and subsequent manipulation of data often results in high volumes of noise as well as a loss of other important information. In addition, such datasets often fail to represent expert medical knowledge and reasoning in any explicit manner. In this research we describe applying data mining methods to retrospective clinical data to build a prediction model for asthma exacerbation severity for pediatric patients in the emergency department. Difficulties in building such a model forced us to investigate alternative strategies for analyzing and processing retrospective data. This paper describes this process together with an approach to mining retrospective clinical data by incorporating formalized external expert knowledge (secondary knowledge sources) into the classification task. This knowledge is used to partition the data into a number of coherent sets, where each set is explicitly described in terms of the secondary knowledge source. Instances from each set are then classified in a manner appropriate for the characteristics of the particular set. We present our methodology and outline a set of experiential results that demonstrate some advantages and some limitations of our approach. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
Text classification is essential for narrowing down the number of documents relevant to a particular topic for further pursual, especially when searching through large biomedical databases. Protein-protein interactions are an example of such a topic with databases being devoted specifically to them. This paper proposed a semi-supervised learning algorithm via local learning with class priors (LL-CP) for biomedical text classification where unlabeled data points are classified in a vector space based on their proximity to labeled nodes. The algorithm has been evaluated on a corpus of biomedical documents to identify abstracts containing information about protein-protein interactions with promising results. Experimental results show that LL-CP outperforms the traditional semisupervised learning algorithms such as SVMand it also performs better than local learning without incorporating class priors.
Resumo:
Short text messages a.k.a Microposts (e.g. Tweets) have proven to be an effective channel for revealing information about trends and events, ranging from those related to Disaster (e.g. hurricane Sandy) to those related to Violence (e.g. Egyptian revolution). Being informed about such events as they occur could be extremely important to authorities and emergency professionals by allowing such parties to immediately respond. In this work we study the problem of topic classification (TC) of Microposts, which aims to automatically classify short messages based on the subject(s) discussed in them. The accurate TC of Microposts however is a challenging task since the limited number of tokens in a post often implies a lack of sufficient contextual information. In order to provide contextual information to Microposts, we present and evaluate several graph structures surrounding concepts present in linked knowledge sources (KSs). Traditional TC techniques enrich the content of Microposts with features extracted only from the Microposts content. In contrast our approach relies on the generation of different weighted semantic meta-graphs extracted from linked KSs. We introduce a new semantic graph, called category meta-graph. This novel meta-graph provides a more fine grained categorisation of concepts providing a set of novel semantic features. Our findings show that such category meta-graph features effectively improve the performance of a topic classifier of Microposts. Furthermore our goal is also to understand which semantic feature contributes to the performance of a topic classifier. For this reason we propose an approach for automatic estimation of accuracy loss of a topic classifier on new, unseen Microposts. We introduce and evaluate novel topic similarity measures, which capture the similarity between the KS documents and Microposts at a conceptual level, considering the enriched representation of these documents. Extensive evaluation in the context of Emergency Response (ER) and Violence Detection (VD) revealed that our approach outperforms previous approaches using single KS without linked data and Twitter data only up to 31.4% in terms of F1 measure. Our main findings indicate that the new category graph contains useful information for TC and achieves comparable results to previously used semantic graphs. Furthermore our results also indicate that the accuracy of a topic classifier can be accurately predicted using the enhanced text representation, outperforming previous approaches considering content-based similarity measures. © 2014 Elsevier B.V. All rights reserved.
Resumo:
Topic classification (TC) of short text messages offers an effective and fast way to reveal events happening around the world ranging from those related to Disaster (e.g. Sandy hurricane) to those related to Violence (e.g. Egypt revolution). Previous approaches to TC have mostly focused on exploiting individual knowledge sources (KS) (e.g. DBpedia or Freebase) without considering the graph structures that surround concepts present in KSs when detecting the topics of Tweets. In this paper we introduce a novel approach for harnessing such graph structures from multiple linked KSs, by: (i) building a conceptual representation of the KSs, (ii) leveraging contextual information about concepts by exploiting semantic concept graphs, and (iii) providing a principled way for the combination of KSs. Experiments evaluating our TC classifier in the context of Violence detection (VD) and Emergency Responses (ER) show promising results that significantly outperform various baseline models including an approach using a single KS without linked data and an approach using only Tweets. Copyright 2013 ACM.
Resumo:
We present a vision and a proposal for using Semantic Web technologies in the organic food industry. This is a very knowledge intensive industry at every step from the producer, to the caterer or restauranteur, through to the consumer. There is a crucial need for a concept of environmental audit which would allow the various stake holders to know the full environmental impact of their economic choices. This is a di?erent and parallel form of knowledge to that of price. Semantic Web technologies can be used e?ectively for the calculation and transfer of this type of knowledge (together with other forms of multimedia data) which could contribute considerably to the commercial and educational impact of the organic food industry. We outline how this could be achieved as our essential ob jective is to show how advanced technologies could be used to both reduce ecological impact and increase public awareness.
Resumo:
Through careful historical and ethnographic research and extensive use of local scholarly works, this book provides a persuasive and careful analysis of the production of knowledge in Central Asia. The author demonstrates that classical theories of science and society are inadequate for understanding the science project in Central Asia. Instead, a critical understanding of local science is more appropriate. In the region, the professional and political ethos of Marxism-Leninism was incorporated into the logic of science on the periphery of the Soviet empire. This book reveals that science, organizes and constructed by Soviet rule, was also defined by individual efforts of local scientists. Their work to establish themselves 'between Marx and the market' is therefore creating new political economies of knowledge at the edge of the scientific world system.
Resumo:
Solving many scientific problems requires effective regression and/or classification models for large high-dimensional datasets. Experts from these problem domains (e.g. biologists, chemists, financial analysts) have insights into the domain which can be helpful in developing powerful models but they need a modelling framework that helps them to use these insights. Data visualisation is an effective technique for presenting data and requiring feedback from the experts. A single global regression model can rarely capture the full behavioural variability of a huge multi-dimensional dataset. Instead, local regression models, each focused on a separate area of input space, often work better since the behaviour of different areas may vary. Classical local models such as Mixture of Experts segment the input space automatically, which is not always effective and it also lacks involvement of the domain experts to guide a meaningful segmentation of the input space. In this paper we addresses this issue by allowing domain experts to interactively segment the input space using data visualisation. The segmentation output obtained is then further used to develop effective local regression models.
Resumo:
We discuss the Application of TAP mean field methods known from Statistical Mechanics of disordered systems to Bayesian classification with Gaussian processes. In contrast to previous applications, no knowledge about the distribution of inputs is needed. Simulation results for the Sonar data set are given.
Resumo:
Risk and knowledge are two concepts and components of business management which have so far been studied almost independently. This is especially true where risk management (RM) is conceived mainly in financial terms, as for example, in the financial institutions sector. Financial institutions are affected by internal and external changes with the consequent accommodation to new business models, new regulations and new global competition that includes new big players. These changes induce financial institutions to develop different methodologies for managing risk, such as the enterprise risk management (ERM) approach, in order to adopt a holistic view of risk management and, consequently, to deal with different types of risk, levels of risk appetite, and policies in risk management. However, the methodologies for analysing risk do not explicitly include knowledge management (KM). This research examines the potential relationships between KM and two RM concepts: perceived quality of risk control and perceived value of ERM. To fulfill the objective of identifying how KM concepts can have a positive influence on some RM concepts, a literature review of KM and its processes and RM and its processes was performed. From this literature review eight hypotheses were analysed using a classification into people, process and technology variables. The data for this research was gathered from a survey applied to risk management employees in financial institutions and 121 answers were analysed. The analysis of the data was based on multivariate techniques, more specifically stepwise regression analysis. The results showed that the perceived quality of risk control is significantly associated with the variables: perceived quality of risk knowledge sharing, perceived quality of communication among people, web channel functionality, and risk management information system functionality. However, the relationships of the KM variables to the perceived value of ERM are not identified because of the low performance of the models describing these relationships. The analysis reveals important insights into the potential KM support to RM such as: the better adoption of KM people and technology actions, the better the perceived quality of risk control. Equally, the results suggest that the quality of risk control and the benefits of ERM follow different patterns given that there is no correlation between both concepts and the distinct influence of the KM variables in each concept. The ERM scenario is different from that of risk control because ERM, as an answer to RM failures and adaptation to new regulation in financial institutions, has led organizations to adopt new processes, technologies, and governance models. Thus, the search for factors influencing the perceived value of ERM implementation needs additional analysis because what is improved in RM processes individually is not having the same effect on the perceived value of ERM. Based on these model results and the literature review the basis of the ERKMAS (Enterprise Risk Knowledge Management System) is presented.
Resumo:
This paper makes a case for taking a systems view of knowledge management within health-care provision, concentrating on the emergency care process in the UK National Health Service. It draws upon research in two casestudy organizations (a hospital and an ambulance service). The case-study organizations appear to be approaching knowledge (and information) management in a somewhat fragmented way. They are trying to think more holistically, but (perhaps) because of the ways their organizations and their work are structured, they cannot ‘see’ the whole of the care process. The paper explores the complexity of knowledge management in emergency health care and draws the distinction for knowledge management between managing local and operational knowledge, and global and clinical knowledge.
Resumo:
This paper uses evidence gathered in two perception studies ofAustralasian and British accounting academics to reflect on aspects of the knowledge production systemwithin accounting academe. We provide evidence of the representation of multiple paradigms in many journals that are scored by participants as being of high quality. Indeed most of the journals we surveyed are perceived by accounting academics as incorporating research from more than one paradigm. It is argued that this ‘catholic’ approach by journal editors and the willingness of many respondents in our surveys to score journals highly on material they publish from both paradigm categories reflects a balanced acceptance of the multi-paradigmatic state of accounting research. Our analysis is set within an understanding of systems of accounting knowledge production as socially constructed and as playing an important role in the distribution of power and reward in the academy. We explore the impact of our results on concerns emerging from the work of a number of authors who carefully expose localised 'elites'. The possibilities for a closer relationship between research emerging from a multi-paradigm discipline and policy setting and practice are also discussed. The analysis provides a sense of optimism that the broad constituency of accounting academics operates within an environment conducive for the exchange of ideas. That optimism is dampened by concerns about the impact of local 'elites' and the need for more research on their impact on accounting academe.
Resumo:
This paper discusses the impact and influences of the growth of postsocial relations on accounting practice. Aspects of the growth of knowledge cultures, which have been argued to impact social and organizational arrangements, are discussed. Extending this view to accounting, we see accountants forming a distinctive knowledge culture with their own unique rules of how knowledge is constituted. These rules are embedded in accounting systems and practices. This paper suggests the need to further develop a research program that seeks to investigate accounting practice in local settings. The discussion in the paper is based on views which posit the growth of intimate links with epistemic objects within organizations and society. This paper argues that such ideas lead to an increasing tendency for us to experience the changes in societal relations and social arrangements as a compression of time and space. The paper relates these ideas to developments in the accounting research literature.
Resumo:
Previous research suggests that changing consumer and producer knowledge structures play a role in market evolution and that the sociocognitive processes of product markets are revealed in the sensemaking stories of market actors that are rebroadcasted in commercial publications. In this article, the authors lend further support to the story-based nature of market sensemaking and the use of the sociocognitive approach in explaining the evolution of high-technology markets. They examine the content (i.e., subject matter or topic) and volume (i.e., the number) of market stories and the extent to which content and volume of market stories evolve as a technology emerges. Data were obtained from a content analysis of 10,412 article abstracts, published in key trade journals, pertaining to Local Area Network (LAN) technologies and spanning the period 1981 to 2000. Hypotheses concerning the evolving nature (content and volume) of market stories in technology evolution are tested. The analysis identified four categories of market stories - technical, product availability, product adoption, and product discontinuation. The findings show that the emerging technology passes initially through a 'technical-intensive' phase whereby technology related stories dominate, through a 'supply-push' phase, in which stories presenting products embracing the technology tend to exceed technical stories while there is a rise in the number of product adoption reference stories, to a 'product-focus' phase, with stories predominantly focusing on product availability. Overall story volume declines when a technology matures as the need for sensemaking reduces. When stories about product discontinuation surface, these signal the decline of current technology. New technologies that fail to maintain the 'product-focus' stage also reflect limited market acceptance. The article also discusses the theoretical and managerial implications of the study's findings. © 2002 Elsevier Science Inc. All rights reserved.