22 resultados para Load bearing steel stud walls

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tne object of this research was to investigate the behaviour of birdcage scaffolding as used in falsework structures, assess the suitability of existing design methods and make recommendations for a set of design rules. Since excessive deflection is as undesirable in a structure as total collapse, the project was divided into two sections. These were to determine the ultimate vertical and horizontal load-carrying capacity and also the deflection characteristics of any falsework. So theoretical analyses were developed to ascertain the ability of both the individual standards to resist vertical load, and of the bracing to resist horizontal load.Furthermore a model was evolved which would predict the horizontal deflection of a scaffold under load using strain energy methods. These models were checked by three series of experiments. The first was on individual standards under vertical load only. The second series was carried out on full scale falsework structures loading vertically and horizontally to failure. Finally experiments were conducted on scaffold couplers to provide additional verification of the method of predicting deflections. This thesis gives the history of the project and an introduction into the field of scaffolding. It details both the experiments conducted and the theories developed and the correlation between theory and experiment. Finally it makes recommendations for a design method to be employed by scaffolding designers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is concerned with the mechanisms of growth and wear of protective oxide films formed under various tribological conditions. In the study three different tribological systems are examined in each of which oxidational wear is the dominant equilibrium mode. These are an unlubricated steel on steel system sliding at low and elevated temperatures, a boundary lubricated aluminium bronze on steel system and an unlubricated reciprocating sliding 9% Cr steel system operated at elevated temperature, in an atmosphere of carbon dioxide. The results of mechanical measurements of wear and friction are presented for a range of conditions of load, speed and temper.ature for the systems, together with the results of extensive examinations of the surfaces and sub­ surfaces by various physical methods of analysis. The major part of the thesis, however, is devoted to the development and application of surface models and theoretical quantative expressions in order to explain the observed oxidational wear phenomena. In this work, the mechanisms of formation of load bearing ox ide plateaux are described and are found to be dependent on system geometry and environment. The relative importance of ''in contact" and "out of contact" oxidation is identified together with growth rate constants appropriate to the two situations. Hypotheses are presented to explain the mechanisms of removal of plateaux to form wear debris. The latter hypotheses include the effects of cyclic stressing and dislocation accumulation, together with effects associated with the kinetics of growth and physical properties of the various oxides. The proposed surf ace mode1s have led to the develop­ ment of quantitative expressions for contact temperature, unlubricated wear rates, boundary lubricated wear rates and the wear of rna ter ial during the transition from severe to mild wear. In general theoretical predictions from these expressions are in very good agreement with experimental values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion implantation modifies the surface composition and properties of materials by bombardment with high energy ions. The low temperature of the process ensures the avoidance of distortion and degradation of the surface or bulk mechanical properties of components. In the present work nitrogen ion implantation at 90 keV and doses above 1017 ions/cm2 has been carried out on AISI M2, D2 and 420 steels and engineering coatings such as hard chromium, electroless Ni-P and a brush plated Co-W alloy. Evaluation of wear and frictional properties of these materials was performed with a lubricated Falex wear test at high loads up to 900 N and a dry pin-on-disc apparatus at loads up to 40 N. It was found that nitrogen implantation reduced the wear of AISI 420 stainless steel by a factor of 2.5 under high load lubricated conditions and by a factor of 5.5 in low load dry testing. Lower but significant reductions in wear were achieved for AISI M2 and D2 steels. Wear resistance of coating materials was improved by up to 4 times in lubricated wear of hard Cr coatings implanted at the optimum dose but lower improvements were obtained for the Co-W alloy coating. However, hardened electroless Ni-P coatings showed no enhancement in wear properties. The benefits obtained in wear behaviour for the above materials were generally accompanied by a significant decrease in the running-in friction. Nitrogen implantation hardened the surface of steels and Cr and Co-W coatings. An ultra-microhardness technique showed that the true hardness of implanted layers was greater than the values obtained by conventional micro-hardness methods, which often result in penetration below the implanted depth. Scanning electron microscopy revealed that implantation reduced the ploughing effect during wear and a change in wear mechanism from an abrasive-adhesive type to a mild oxidative mode was evident. Retention of nitrogen after implantation was studied by Nuclear Reaction Analysis and Auger Electron Spectroscopy. It was shown that maximum nitrogen retention occurs in hard Cr coatings and AISI 420 stainless steel, which explains the improvements obtained in wear resistance and hardness. X-ray photoelectron spectroscopy on these materials revealed that nitrogen is almost entirely bound to Cr, forming chromium nitrides. It was concluded that nitrogen implantation at 90 keV and doses above 3x1017 ions/cm2 produced the most significant improvements in mechanical properties in materials containing nitride formers by precipitation strengthening, improving the load bearing capacity of the surface and changing the wear mechanism from adhesive-abrasive to oxidative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Thesis, details of a proposed method for the elastic-plastic failure load analysis of complete building structures are given. In order to handle the problem, a computer programme in Atlas Autocode is produced. The structures consist of a number of parallel shear walls and intermediate frames connected by floor slabs. The results of an experimental investigation are given to verify the theoretical results and to demonstrate various factors that may influence the behaviour of these structures. Large full scale practical structures are also analysed by the proposed method and suggestions are made for achieving design economy as well as for extending research in various aspects of this field. The existing programme for elastic-plastic analysis of large frames is modified to allow for the effect of composite action of structural members, i.e. reinforced concrete floor slabs and the supporting steel beams. This modified programme is used to analyse some framed type structures with composite action as well as those which incorporate plates and shear walls. The results obtained are studied to ascertain the influence of composite action and other factors on the load carrying capacity of both bare frames and complete building structures. The theoretical failure load presented in this thesis does not predict the overall failure load of the structure nor does it predict the partial failure load of the shear walls and slabs but it merely predicts the partial failure load of a single frame and assumes that the loss of stiffess of such a frame renders the overall structure unusable. For most structures the analysis proposed in this thesis is likely to break down prematurely due to the failure of the slab and shear wall system and this factor must be taken into account in any future work on such structures. The experimental work reported in this thesis is acknowledged to be unsatisfactory as a verification of the limited theory proposed. In particular perspex was not found to be a suitable material for testing at high loads, micro-concrete may be more suitable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globally, more than 1000 tonnes of titanium (Ti) is implanted into patients in the form of biomedical devices on an annual basis. Ti is perceived to be ‘biocompatible’ owing to the presence of a robust passive oxide film (approx. 4 nm thick) at the metal surface. However, surface deterioration can lead to the release of Ti ions, and particles can arise as the result of wear and/or corrosion processes. This surface deterioration can result in peri-implant inflammation, leading to the premature loss of the implanted device or the requirement for surgical revision. Soft tissues surrounding commercially pure cranial anchorage devices (bone-anchored hearing aid) were investigated using synchrotron X-ray micro-fluorescence spectroscopy and X-ray absorption near edge structure. Here, we present the first experimental evidence that minimal load-bearing Ti implants, which are not subjected to macroscopic wear processes, can release Ti debris into the surrounding soft tissue. As such debris has been shown to be pro-inflammatory, we propose that such distributions of Ti are likely to effect to the service life of the device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The load-bearing biomechanical role of the intervertebral disc is governed by the composition and organization of its major macromolecular components, collagen and aggrecan. The major function of aggrecan is to maintain tissue hydration, and hence disc height, under the high loads imposed by muscle activity and body weight. Key to this role is the high negative fixed charge of its glycosaminoglycan side chains, which impart a high osmotic pressure to the tissue, thus regulating and maintaining tissue hydration and hence disc height under load. In degenerate discs, aggrecan degrades and is lost from the disc, particularly centrally from the nucleus pulposus. This loss of fixed charge results in reduced hydration and loss of disc height; such changes are closely associated with low back pain. The present authors developed biomimetic glycosaminoglycan analogues based on sulphonate-containing polymers. These biomimetics are deliverable via injection into the disc where they polymerize in situ, forming a non-degradable, nuclear "implant" aimed at restoring disc height to degenerate discs, thereby relieving back pain. In vitro, these glycosaminoglycan analogues possess appropriate fixed charge density, hydration and osmotic responsiveness, thereby displaying the capacity to restore disc height and function. Preliminary biomechanical tests using a degenerate explant model showed that the implant adapts to the space into which it is injected and restores stiffness. These hydrogels mimic the role taken by glycosaminoglycans in vivo and, unlike other hydrogels, provide an intrinsic swelling pressure, which can maintain disc hydration and height under the high and variable compressive loads encountered in vivo. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The economic and efficient exploitation of composite materials in critical load bearing applications relies on the ability to predict safe operational lives without excessive conservatism. Developing life prediction and monitoring techniques in these complex, inhomogeneous materials requires an understanding of the various failure mechanisms which can take place. This article describes a range of damage mechanisms which are observed in polymer, metal and ceramic matrix composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pin on disc wear machines were used to study the boundary lubricated friction and wear of AISI 52100 steel sliding partners. Boundary conditions were obtained by using speed and load combinations which resulted in friction coefficients in excess of 0.1. Lubrication was achieved using zero, 15 and 1000 ppm concentrations of an organic dimeric acid additive in a hydrocarbon base stock. Experiments were performed for sliding speeds of 0.2, 0.35 and 0.5 m/s for a range of loads up to 220 N. Wear rate, frictional force and pin temperature were continually monitored throughout tests and where possible complementary methods of measurement were used to improve accuracy. A number of analytical techniques were used to examine wear surfaces, debris and lubricants, namely: Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), Powder X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), optical microscopy, Back scattered Electron Detection (BSED) and several metallographic techniques. Friction forces and wear rates were found to vary linearly with load for any given combination of speed and additive concentration. The additive itself was found to act as a surface oxidation inhibitor and as a lubricity enhancer, particularly in the case of the higher (1000 ppm) concentration. Wear was found to be due to a mild oxidational mechanism at low additive concentrations and a more severe metallic mechanism at higher concentrations with evidence of metallic delamination in the latter case. Scuffing loads were found to increase with increasing additive concentration and decrease with increasing speed as would be predicted by classical models of additive behaviour as an organo-metallic soap film. Heat flow considerations tended to suggest that surface temperature was not the overriding controlling factor in oxidational wear and a model is proposed which suggests oxygen concentration in the lubricant is the controlling factor in oxide growth and wear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pin on disc wear machine has been used to study the oxidational wear of low alloy steel in a series of experiments which were carried out under dry wear sliding conditions at range of loads from 11.28 to 49.05 N and three sliding speeds of 2 m/s, 3.5 m/s and 5 m/s, in atmosphere of air, Ar, CO2, 100% O2, 20% O2-80% Ar and 2% O2-98% Ar. Also, the experiments were conducted to study frictional force, surface and contact temperatures and surface parameters of the wearing pins. The wear debris was examined using x-ray diffraction technique for the identification of compounds produced by the wear process. Scanning electron microscopy was employed to study the topographical features of worn pins and to measure the thickness of the oxide films. Microhardness tests were carried out to investigate the influence of the sub-surface microhardness in tribological conditions. Under all loads, speeds and atmospheres parabolic oxidation growth was observed on worn surfaces, although such growth is dependent on the concentration of oxygen in the atmospheres employed. These atmospheres are shown to influence wear rate and coefficient of friction with change in applied load. The nature of the atmosphere also has influence on surface and contact temperatures as determined from heat flow analysis. Unlubricated wear debris was found to be a mixture of αFe2O3, Fe3O4 and FeO oxide. A model has been proposed for tribo-oxide growth demonstrating the importance of diffusion rate and oxygen partial pressure, in the oxidation processes and thus in determination of wear rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five linepipe type steels were produced in order to study the effect of calcium and magnesium injection on their final properties. Two of these steels were at the extremes of the sulphide range i.e. 0.003 and 0.017% sulphur with no injection attempted; thereby, providing standards to compare with the injected steels. The oxygen level varied from 21 to 63 p.p.m. The cast ingots were controlled-rolled and isothermally rolled in order to study the deformation characteristics of the residual non-metallic inclusions. The structure and cleanliness of these steels was evaluated metallographically using the light microscope, SEM, and image analysis and the results related to their Charpy toughness and HIC resistance. Increasing sulphur levels decreased final properties of the steel. In the untreated state, with as little as 0.003% sulphur, test orientation was highly influential. Modification of sulphur bearing steels was achieved with low modifying element to sulphur ratios provided that the oxygen content was very low. Injection of calcium into steel caused interaction with oxide and sulphide inclusions which was biased toward oxide reduction relative to sulphur removal. Magnesium again reduced oxides and appeared to be linked with aluminia containing inclusions in the final product. It produced improved toughness values relative to a similar sulphur containing calcium treated steel. The results of this work could be extended to establish the mechanism of inclusion modification with magnesium additions to sulphur bearing steels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in aerostatic thrust bearings have included: (a) the porous aerostatic thrust bearing containing a porous pad and (b) the inherently compensated compliant surface aerostatic thrust bearing containing a thin elastomer layer. Both these developments have been reported to improve the bearing load capacity compared to conventional aerostatic thrust bearings with rigid surfaces. This development is carried one stage further in a porous and compliant aerostatic thrust bearing incorporating both a porous pad and an opposing compliant surface. The thin elastomer layer forming the compliant surface is bonded to a rigid backing and is of a soft rubber like material. Such a bearing is studied experimentally and theoretically under steady state operating conditions. A mathematical model is presented to predict the bearing performance. In this model is a simplified solution to the elasticity equations for deflections of the compliant surface. Account is also taken of deflections in the porous pad due to the pressure difference across its thickness. The lubrication equations for flow in the porous pad and bearing clearance are solved by numerical finite difference methods. An iteration procedure is used to couple deflections of the compliant surface and porous pad with solutions to the lubrication equations. Comparisons between experimental results and theoretically predicted bearing performance are in good agreement. However these results show that the porous and compliant aerostatic thrust bearing performance is lower than that of a porous aerostatic thrust bearing with a rigid surface in place of the compliant surface. This discovery is accounted to the recess formed in the bearing clearance by deflections of the compliant surface and its effect on flow through the porous pad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wear rates of sliding surfaces are significantly reduced if mild oxidational wear can be encouraged. It is hence of prime importance in the interest of component life and material conservation to understand the factors necessary to promote mild, oxidational wear, The present work investigates the fundamental mechanism of the running-in wear of BS EN 31!EN 8 steel couples. under various conditions of load. speed and test duration. Unidirectional sliding experiments were carried out on a pin-on~disc wear machine where frictional force, wear rate, temperature and contact resistance were continuously monitored during each test. Physical methods of analysis (x-ray, scanning electron microscopy etc.) were used to examine the wear debris and worn samples. The wear rate versus load curves revealed mild wear transitions, which under long duration of running, categorized mild wear into four distinct regions.α-Fe20s. Fe304, FeO and an oxide mixture were the predominant oxides in four regions of oxidational wear which were identified above the Welsh T2 transition. The wear curves were strongly effected by the speed and test duration. A surface model was used to calculate the surface parameters, and the results were found to be comparable with the experimentally observed parameters. Oxidation was responsible for the transition from severe to mild wear at a load corresponding to the Welsh T2 transition. In the running-in period sufficient energy input and surface hardness enabled oxide growth rate to increase and eventually exceeded the rate of removal, where mild wear ensued. A model was developed to predict the wear volume up to the transition. Remarkable agreement was found between the theoretical prediction and the experimentally-measured values. The oxidational mechanjsm responsible for transitjon to mild wear under equilibrium conditions was related to the formation of thick homogenous oxide plateaux on subsurface hardened layers, FeO was the oxide formed initially at the onset of mild wear but oxide type changed.during the total running period to give an equilibrium oxide whose nature depended on the loads applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The turbocharging of diesel engines has led to increase in temperature, load and corrosive attack of plain bearings. To meet these requirements, overlay plated aluminium alloys are now preferred. Currently, lead-tin alloys are deposited using a zincate layer and nickel strike, as intermediate stages in the process. The nickel has undesirable seizure characteristics and the zincate can given rise to corrosion problems. Consequently, brush plating allows the possible elimination of these stages and a decrease in process together with greater automation. The effect of mode application, on the formation of zincate films, using film growth weight measurements, potential-time studies, peel adhesion testing and Scanning Electron Microscopy was studied, for both SIC and AS15 aluminium alloys. The direct plating of aluminium was also successfully achieved. The results obtained indicate that generally, although lower adhesion resulted when a brush technique was used, satisfactory adhesion for fatigue testing was achieved. Both lead-tin and tin-cobalt overlays were examined and a study of the parameters governing brush plating were carried out using various electrolytes. An experimentally developed small scale rig, was used to produce overlay plated bearings that were fatigue tested until failure. The bearings were then examined and an analysis of the failure mechanisms undertaken. The results indicated that both alloy systems are of the regular codeposition type. Tin-cobalt overlays were superior to conventional lead-tin overlays and remained in good condition, although the lining (substrate) failed. Brush plated lead-tin was unsatisfactory. Sufficient understanding has now been gained, to enable a larger scale automated plant to be produced. This will allow a further study of the technique to be carried out, on equipment that more closely resembles that of a full scale production process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study some common types of Rolling Bearing vibrations are analysed in depth both theoretically and experimentally. The study is restricted to vibrations in the radial direction of bearings having pure radial load and a positive radial clearance. The general vibrational behaviour of such bearings has been investigated with respect to the effects of varying compliance, manufacturing tolerances and the interaction between the bearing and the machine structure into which it is fitted. The equations of motion for a rotor supported by a bearing in which the stiffness varies with cage position has been set up and examples of solutions,obtained by digital simulation. is given. A method to calculate amplitudes and frequencies of vibration components due to out of roundness of the inner ring and varying roller diameters has been developed. The results from these investigations have been combined with a theory for bearing/machine frame interaction using mechanical impedance technique, thereby facilitating prediction of the vibrational behaviour of the whole set up. Finally. the effects of bearing fatigue and wear have been studied with particular emphasis on the use of vibration analysis for condition monitoring purposes. A number of monitoring methods have been tried and their effectiveness discussed. The experimental investigation was carried out using two purpose built rigs. For the purpose of analysis of the experimental measurements a digital mini computer was adapted for signal processing and a suite of programs was written. The program package performs several of the commonly used signal analysis processes and :include all necessary input and output functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purlin-sheeting system has been the subject of numerous theoretical and experimental investigations over the past 30 years, but the complexity of the problem has led to great difficulty in developing a sound and general model. The primary aim of the thesis is to investigate the failure behaviours of cold-formed zed and channel sections for use in purlin-sheeting systems. Both the energy method and finite strip method are used to develop an approach to investigate cold-formed zed and channel section beams with partial-lateral restraint from the metal sheeting when subjected to a uniformly distributed transverse load. The stress analysis of cold-formed zed and channel section beams with partially-lateral restraint from the metal sheeting when subjected to a uniformly distributed transverse load is investigated firstly by using the analytical model based on the energy method in which the restraint actions of the sheeting are modelled by using two springs representing the translational and rotational restraints. The numerical results have showed that the two springs have significantly different influences on the stresses of the beams. The influence of the two springs has also been found to depend on the anti-sag bar and the position of the loading line. A novel method is presented for analysing the elastic local buckling behaviour of cold-formed zed and channel section beams with partial-lateral restraint from metal sheeting when subjected to a uniformly distributed transverse load, which is carried out by inputting the cross sectional stresses with the largest compressive stress into the finite strip analysis. By using the presented novel method, individual influences of warning stress, partially lateral restraints from the sheeting and the dimensions of the cross section and position of the loading line on the buckling behaviour are investigated.