2 resultados para Llibres rars

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinoic acid (RA) signaling is important to normal development. However, the function of the different RA receptors (RARs)-RARα, RARβ, and RARγ-is as yet unclear. We have used wild-type and transgenic zebrafish to examine the role of RARγ. Treatment of zebrafish embryos with an RARγ-specific agonist reduced somite formation and axial length, which was associated with a loss of hoxb13a expression and less-clear alterations in hoxc11a or myoD expression. Treatment with the RARγ agonist also disrupted formation of tissues arising from cranial neural crest, including cranial bones and anterior neural ganglia. There was a loss of Sox 9-immunopositive neural crest stem/progenitor cells in the same anterior regions. Pectoral fin outgrowth was blocked by RARγ agonist treatment. However, there was no loss of Tbx-5-immunopositive lateral plate mesodermal stem/progenitor cells and the block was reversed by agonist washout or by cotreatment with an RARγ antagonist. Regeneration of the caudal fin was also blocked by RARγ agonist treatment, which was associated with a loss of canonical Wnt signaling. This regenerative response was restored by agonist washout or cotreatment with the RARγ antagonist. These findings suggest that RARγ plays an essential role in maintaining stem/progenitor cells during embryonic development and tissue regeneration when the receptor is in its nonligated state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinoic acid (RA) is thought to signal through retinoic acid receptors (RARs), i.e. RARα, β, and γ to play important roles in embryonic development and tissue regeneration. In this thesis, the zebrafish (Danio rario) was used as a vertebrate model organism to examine the role of RARγ. Treatment of zebrafish embryos with a RARγ specific agonist reduced the axial length of developing embryos, associated with reduced somite number and loss of hoxb13a expression. There were no clear alterations in hoxc11a or myoD expression. Treatment with the RARγ agonist disrupted the formation of anterior structures of the head, the cranial bones and the anterior lateral line ganglia, associated with a loss of sox9 immunopositive cells in the same regions. Pectoral fin outgrowth was blocked by treatment with the RARγ agonist; however, this was not associated with loss of tbx5a immunopositive lateral plate cells and was reversed by wash out of the RARγ agonist or co-treatment with a RARγ antagonist. Regeneration of the transected caudal fin was also blocked by RARγ agonist treatment and restored by agonist washout or antagonist co-treatment; this phenotype was associated with a localised reduction in canonical Wnt signalling. Conversely, elevated canonical Wnt signalling after RARγ treatment was seen in other tissues, including ectopically in the notochord. Furthermore, some phenotypes seen in the RARγ treated embryos were present in mutant zebrafish embryos in which canonical Wnt signalling was constitutively increased. These data suggest that RARγ plays an essential role in maintaining neural crest and mesodermal stem/progenitor cells during normal embryonic development and tissue regeneration when the receptor is in its non-ligated state. In addition, this work has provided evidence that the activation status of RARγ may regulate hoxb13a gene expression and canonical Wnt signalling. Further research is required to confirm such novel regulatory roles.