2 resultados para Living on the edge : wetlands and birds in a changing Sahel
em Aston University Research Archive
Resumo:
Rhizocarpon geographicum is a crustose lichen found frequently on rock surfaces of southern aspect and less frequently on rock surfaces of northern aspect in Gwynedd, North Wales. This study tested the hypothesis that the radial growth of R. geographicum thalli predicts aspect distribution. Thalli of all sizes, however, exhibited significantly greater radial growth over 18 months on northwest compared with southeast facing surfaces. The hypothesis that a more intense competitive environment on northwest facing surfaces may explain the aspect distribution of R. geographicum was then tested. The size frequency distributions of thalli revealed a higher proportion of thalli in the smallest size class and a more restricted thallus size range on the northwest facing surfaces. In addition, thallus mortality appeared to be greater on northwest facing surfaces. Significantly more associated lichen species were present on rock surfaces of northern aspect at sites where R. geographicum was present. The mean frequency of the associated lichen species, however, was significantly lower on surfaces of northern aspect where R. geographicum was present. In addition, two common foliose species at these sites were demonstrated experimentally to overgrow thalli of R. geographicum. It is concluded that the growth of R. geographicum over the study period did not predict aspect distribution and that differences in the competitive environments on northwest and southeast surfaces may be an important factor determining aspect distribution. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Summary: Renewable energy is one of the main pillars of sustainable development, especially in developing economies. Increasing energy demand and the limitation of fossil fuel reserves make the use of renewable energy essential for sustainable development. Wind energy is considered to be one of the most important resources of renewable energy. In North African countries, such as Egypt, wind energy has an enormous potential; however, it faces quite a number of technical challenges related to the performance of wind turbines in the Saharan environment. Seasonal sand storms affect the performance of wind turbines in many ways, one of which is increasing the wind turbine aerodynamic resistance through the increase of blade surface roughness. The power loss because of blade surface deterioration is significant in wind turbines. The surface roughness of wind turbine blades deteriorates because of several environmental conditions such as ice or sand. This paper is the first review on the topic of surface roughness effects on the performance of horizontal-axis wind turbines. The review covers the numerical simulation and experimental studies as well as discussing the present research trends to develop a roadmap for better understanding and improvement of wind turbine performance in deleterious environments.