4 resultados para Linear system solve
em Aston University Research Archive
Resumo:
We compare the Q parameter obtained from the semi-analytical model with scalar and vector models for two realistic transmission systems. First a linear system with a compensated dispersion map and second a soliton transmission system.
Resumo:
Many of the recent improvements in the capacity of data cartridge systems have been achieved through the use of narrower tracks, higher linear densities and continuous servo tracking with multi-channel heads. These changes have produced new tribological problems at the head/tape interface. It is crucial that the tribology of such systems is understood and this will continue since increasing storage capacities and faster transfer rates are constantly being sought. Chemical changes in the surface of single and dual layer MP tape have been correlated to signal performance. An accelerated tape tester, consisting of a custom made cycler ("loop tester"), was used to ascertain if results could be produced that were representative of a real tape drive system. A second set of experiments used a modified tape drive (Georgens cycler), which allowed the effects of the tape transport system on the tape surface to be studied. To isolate any effects on the tape surface due to the head/tape interface, read/write heads were not fitted to the cycler. Two further sets of experiments were conducted which included a head in the tape path. This allowed the effects of the head/tape interface on the physical and chemical properties of the head and tape surfaces to be investigated. It was during the final set of experiments that the effect on the head/tape interface, of an energised MR element, was investigated. The effect of operating each cycler at extreme relative humidity and temperature was investigated through the use of an environmental chamber. Extensive use was made of surface specific analytical techniques such as XPS, AFM, AES, and SEM to study the physical and chemical changes that occur at the head/tape interface. Results showed that cycling improved the signal performance of all the tapes tested. The data cartridge drive belt had an effect on the chemical properties of the tape surface on which it was in contact. Also binder degradation occurred for each tape and appeared to be greater at higher humidity. Lubricant was generally seen to migrate to the tape surface with cycling. Any surface changes likely to affect signal output occurred at the head surface rather than the tape.
Resumo:
Methods of dynamic modelling and analysis of structures, for example the finite element method, are well developed. However, it is generally agreed that accurate modelling of complex structures is difficult and for critical applications it is necessary to validate or update the theoretical models using data measured from actual structures. The techniques of identifying the parameters of linear dynamic models using Vibration test data have attracted considerable interest recently. However, no method has received a general acceptance due to a number of difficulties. These difficulties are mainly due to (i) Incomplete number of Vibration modes that can be excited and measured, (ii) Incomplete number of coordinates that can be measured, (iii) Inaccuracy in the experimental data (iv) Inaccuracy in the model structure. This thesis reports on a new approach to update the parameters of a finite element model as well as a lumped parameter model with a diagonal mass matrix. The structure and its theoretical model are equally perturbed by adding mass or stiffness and the incomplete number of eigen-data is measured. The parameters are then identified by an iterative updating of the initial estimates, by sensitivity analysis, using eigenvalues or both eigenvalues and eigenvectors of the structure before and after perturbation. It is shown that with a suitable choice of the perturbing coordinates exact parameters can be identified if the data and the model structure are exact. The theoretical basis of the technique is presented. To cope with measurement errors and possible inaccuracies in the model structure, a well known Bayesian approach is used to minimize the least squares difference between the updated and the initial parameters. The eigen-data of the structure with added mass or stiffness is also determined using the frequency response data of the unmodified structure by a structural modification technique. Thus, mass or stiffness do not have to be added physically. The mass-stiffness addition technique is demonstrated by simulation examples and Laboratory experiments on beams and an H-frame.
Resumo:
In this study, two linear coplanar array antennas based on Indium Phosphide (InP) substrate are designed, presented and compared in terms of bandwidth and gain. Slot introduction in combination with coplanar structure is investigated, providing enhanced antenna gain and bandwidth at the 60 GHz frequency band. In addition the proposed array antennas are evaluated in terms of integration with a high-speed photodiode and investigated in terms of matching, providing a bandwidth that reaches 2 GHz. Moreover a potential beam forming scenario combined with photonic up-conversion scheme has been proposed. © 2013 IEEE.