22 resultados para Linear polarization resistance. Mass loss coupons

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduction in the useful-service life of reinforced concrete construction in the Arabian Gulf is attributed to reinforcement corrosion. While this phenomenon is primarily related to chloride ions, the concomitant pressure of sulfate salts may accelerate the deterioration process. Another factor which might influence reinforcement corrosion is the elevated ambient temperature. While few studies have been conducted to evaluate the individual effect of sulfate contamination and temperature on chloride binding and reinforcement corrosion, the synergistic effect of these factors on concrete durability, viz.-a-viz., reinforcement corrosion, needs to be evaluated. Further, the environmental conditions of the Arabian Gulf are also conducive for accelerated carbonation. However, no data are available on the concomitant effect of chloride-sulfate contamination and elevated temperature on the carbonation behaviour of plain and blended cements.This study was conducted to evaluate the conjoint effect of chloride-sulfate contamination and temperature on the pore solution chemistry and reinforcement corrosion. The effect of chloride-sulfate contamination and elevated temperature on carbonation in plain and blended cements was also investigated. Pore solution extraction and analysis, X-ray diffraction, differential thermal analysis, scanning electron microscopy, DC linear polarization resistance and AC impedance spectroscopy techniques were utilized to study the effect of experimental parameters on chloride binding, reinforcement corrosion and carbonation.The results indicated that the concomitant presence of chloride and sulfate salts and temperature significantly influences the durability performance of concrete by: (i) decreasing the chloride binding, (ii) increasing reinforcement corrosion, and (iii) accelerating the carbonation process. To avoid such deterioration, it is advisable to minimize both chloride and sulfate contamination contributed by the mixture ingredients. Due to the known harmful role of sulfate ions in decreasing the chloride binding and increasing reinforcement corrosion, limits on allowable sulfate contamination in concrete should also be established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report all-fiber polarization interference filters, known as Lyot and Lyot-Ohman filters, based on alternative concatenation of UV-inscribed fiber gratings with structure tilted at 45° and polarization maintaining (PM) fiber cavities. Such filters generate comb-like transmission of linear polarization output. The free spectral range (FSR) of a single-stage (Lyot) filter is PM fiber cavity length dependent, as a 20 cm long cavity showed a 26.6 nm FSR while the 40 cm one exhibited a 14.8 nm FSR. Furthermore, we have theoretically and experimentally demonstrated all-fiber 2-stage and 3-stage Lyot-Ohman filters, giving more freedom in tailoring the transmission characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of 10% and 20% replacement metakaolin on a number of aspects of hydration chemistry and service performance of ordinary Portland cement pastes has been investigated. The analysis of expressed pore solutions has revealed that metakaolin-blended specimen pastes possess enhanced chloride binding capacities and reduced pore solution pH values when compared with their unblended counterparts. The implications of the observed changes in pore solution chemistry with respect to chloride induced reinforcement corrosion and the reduction in expansion associated with the alkali aggregate reaction are discussed. Differential thermal analysis, mercury intrusion porosimetry, and nuclear magnetic resonance spectroscopy have been employed in the analysis of the solid phase. It is suggested that hydrated gehlenite (a product of pozzolanic reaction) is operative in the removal and solid state binding of chloride ions from the pore solution of metakaolin-blended pastes. Diffusion coefficients obtained in a non-steady state chloride ion diffusion investigation have indicated that cement pastes containing 10% and 20% replacement metakaolin exhibit superior resistance to the penetration of chloride ions in comparison with those of plain OPC of the same water:cement ratio. The chloride induced corrosion behaviour of cement paste samples, of water:cement ratio 0.4, containing 0% , 10%, and 20% replacement metakaolin, has been monitored using the linear polarization technique. No significant corrosion of embedded mild steel was observed over a 200 day period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein oxidation is thought to contribute to a number of inflammatory diseases, hence the development of sensitive and specific analytical techniques to detect oxidative PTMs (oxPTMs) in biological samples is highly desirable. Precursor ion scanning for fragment ions of oxidized amino acid residues was investigated as a label-free MS approach to mapping specific oxPTMs in a complex mixture of proteins. Using HOCl-oxidized lysozyme as a model system, it was found that the immonium ions of oxidized tyrosine and tryptophan formed in MS(2) analysis could not be used as diagnostic ions, owing to the occurrence of isobaric fragment ions from unmodified peptides. Using a double quadrupole linear ion trap mass spectrometer, precursor ion scanning was combined with detection of MS(3) fragment ions from the immonium ions and collisionally-activated decomposition peptide sequencing to achieve selectivity for the oxPTMs. For chlorotyrosine, the immonium ion at 170.1 m/z fragmented to yield diagnostic ions at 153.1, 134.1, and 125.1 m/z, and the hydroxytyrosine immonium ion at 152.1 m/z gave diagnostic ions at 135.1 and 107.1 m/z. Selective MS(3) fragment ions were also identified for 2-hydroxytryptophan and 5-hydroxytryptophan. The method was used successfully to map these oxPTMs in a mixture of nine proteins that had been treated with HOCl, thereby demonstrating its potential for application to complex biological samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have theoretically and experimentally designed and demonstrated an all-fiber polarization interference filter (AFPIF), which is formed by a polarization-maintaining (PM) fiber cavity structure utilizing two 45° tilted fiber gratings (45°-TFGs) inscribed by UV laser on the PM fiber. Such a filter could generate modulated transmission of linear polarization status. It has been revealed that the modulation depth of the transmission depends on the coupling angle between the 45°-TFGs and the PM fiber cavity. When the two 45°-TFGs in PM fiber are oriented at 45° to the principal axis of the PM fiber cavity, the maximum modulation depth is achievable. Due to the thermal effect on birefringence of the PM fiber, the AFPIF can be tuned over a broad wavelength range just by simple thermal tuning of the cavity. The experiment results show that the temperature tuning sensitivity is proportional to the length ratio of the PM fiber cavity under heating. For 18 and 40 cm long cavities with 6 cm part under heating, the thermal tuning sensitivities are 0.616 and 0.31 nm/° C, respectively, which are almost two orders of magnitude higher than normal fiber Bragg gratings. © 1983-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work is to gain knowledge on kinetics of biomass decomposition under oxidative atmospheres, mainly examining effect of heating rate on different biomass species. Two sets of experiments are carried out: the first set of experiments is thermal decomposition of four different wood particles, namely aspens, birch, oak and pine under an oxidative atmosphere and analysis with TGA; and the second set is to use large size samples of wood under different heat fluxes in a purpose-built furnace, where the temperature distribution, mass loss and ignition characteristics are recorded and analyzed by a data post-processing system. The experimental data is then used to develop a two-step reactions kinetic scheme with low and high temperature regions while the activation energy for the reactions of the species under different heating rates is calculated. It is found that the activation energy of the second stage reaction for the species with similar constituent fractions tends to converge to a similar value under the high heating rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two sets of experiments, categorized as TG–FTIR and Py–GC–FTIR, are employed to investigate the mechanism of the hemicellulose pyrolysis and the formation of main gaseous and bio-oil products. The “sharp mass loss stage” and the corresponding evolution of the volatile products are examined by the TG–FTIR graphs at the heating rate of 3–80 K/min. A pyrolysis unit, composed of fluidized bed reactor, carbon filter, vapour condensing system and gas storage, is employed to investigate the products of the hemicellulose pyrolysis under different temperatures (400–690 °C) at the feeding flow rate of 600 l/h. The effects of temperature on the condensable products are examined thoroughly. The possible routes for the formation of the products are systematically proposed from the primary decomposition of the three types of unit (xylan, O-acetylxylan and 4-O-methylglucuronic acid) and the secondary reactions of the fragments. It is found that the formation of CO is enhanced with elevated temperature, while slight change is observed for the yield of CO2 which is the predominant products in the gaseous mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined flow loop - jet impingement pilot plant has been used to determine mass loss rates in a mixed gas - saltwater - sand multiphase flow at impact velocities up to 70 m/s. Artificial brine with a salt content of 27 g/1 was used as liquid phase. Sand content, with grain size below 150 µ, was 2.7 g/l brine. CO at a pressure of 15 bar was used as gas phase. The impact angle between jet stream (nozzle) and sample surface was varied between 30 and 90°. Rectangular stainless steel disc samples with a size of 20 × 15 × 5 mm were used. They were mechanically ground and polished prior to testing. Damaged surfaces of specimens exposed to the high velocity multiphase flow were investigated by stereo microscopy, scanning electron microscopy (SEM) and an optical device for 3D surface measurements. Furthermore, samples were investigated by applying atomic force microscopy (AFM), magnetic force microscopy (MFM) and nanoindentation. Influence of impact velocity and impact angle on penetration rates (mass loss rates) of two CRAs (UNS S30400 and N08028) are presented. Moreover effects of chemical composition and mechanical properties are critically discussed. © 2008 by NACE International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automotive catalysts are the most effective short-term answer to air pollution from automobiles. Since strict control of exhaust emissions is, or will be,covered by legislation in most developed countries in the world, catalytic devices will be increasingly fitted to cars. There is consequently an urgent need for the development of catalysts that will not compete for scarce precious metal resources. A number of problems have already been identified in connection with base metal catalysts but quantitative investigations are lacking. The base metal reduction catalysts developed by Imperial Chemical Industries Limited, catalysts and Chemical Group, in collaboration with the Air Pollution Control Laboratory, B L Cars Limited for automotive emission control, are susceptible to de-activation by three major mechanisms. These are: physical loss of the wash-coat (a high surface area coating which supports the active species), aggregation of the active species and poisoning by fuel and engine oil additives. This thesis is especially concerned with the first two of these and attempts to indicate the relative magnitude .of their effect on the activity of. the catalysts. Aggregation of the active species or sintering, as it is loosely called, was studied by using impregnated granules to overcome effects due to the loss of the wash-coat. Samples were aged in a synthetic exhaust gas, free from poisons, and metal crystallite sizes were measured by scanning-electron microscopy. The increase in particle size was correlated with the loss in catalytic activity. In order to maintain a link with the real conditions of service a number of monolithic catalysts were tested in an engine-dynamometer and several previously tested endurance catalysts were examined. A mechanism is proposed for the break-up and subsequent 10s.5 of the wash-coat and suggestions for improved resistance to loss of the' coating and active species are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For six decades tetracyclines have been successfully used for their broad spectrum antibiotic effects. However, non-antibiotic effects of tetracyclines have been reported. The anti-inflammatory effects of tetracycline drugs have been investigated in the context of a range of inflammatory diseases including sepsis and a number of neurodegenerative diseases. This thesis investigates the effects of a range of clinically important tetracyclines (oxytetracycline, doxycycline, minocycline and tigecycline) on the ability of the J774.2 cell line to produce nitric oxide when stimulated with the bacterial cell wall component, LPS. The proteome of J774.2 cells was analysed in response to LPS stimulation (1 µg/ml) with and without prior treatment with minocycline (50µg/ml), this allows the unbiased analysis of the cellular proteome in response to minocycline and LPS, protein spots of interest were excised and identified by nano-electrospray ionisation-linear ion trap mass spectroscopy. All of the tetracyclines that were investigated inhibited LPS-induced nitric oxide production in a dose dependent manner and this was due to the inhibition of inducible nitric oxide synthase expression. This is the first report to show that tigecycline inhibits inducible nitric oxide expression and nitric oxide production. Using two-dimensional gel electrophoresis and total protein staining eleven proteins were identified as being modulated by LPS. Of these eleven proteins; expression of some, but not all was modulated when the cells received a prior treatment with minocycline suggesting that minocycline does not completely block LPS-induced macrophage activation but probably specifically acts on particular inflammatory signaling pathways in macrophages. Three protein spots with a similar molecular weight but different pI values identified in this proteomic study were identified as ATP synthase ß chain. These different protein spots probably correspond to different phosphorylation states of the protein, suggesting that minocycline affects the balance of protein kinase and protein phosphatase activity in the immune response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphology, chemical composition, and mechanical properties in the surface region of α-irradiated polytetrafluoroethylene (PTFE) have been examined and compared to unirradiated specimens. Samples were irradiated with 5.5 MeV 4He2+ ions from a tandem accelerator to doses between 1 × 106 and 5 × 1010 Rad. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS), using a 20 keV C60+ source, was employed to probe chemical changes as a function of a dose. Chemical images and high resolution spectra were collected and analyzed to reveal the effects of a particle radiation on the chemical structure. Residual gas analysis (RGA) was utilized to monitor the evolution of volatile species during vacuum irradiation of the samples. Scanning electron microscopy (SEM) was used to observe the morphological variation of samples with increasing a particle dose, and nanoindentation was engaged to determine the hardness and elastic modulus as a function of a dose. The data show that PTFE nominally retains its innate chemical structure and morphology at a doses <109 Rad. At α doses ≥109 Rad the polymer matrix experiences increased chemical degradation and morphological roughening which are accompanied by increased hardness and declining elasticity. At  α doses >1010 Rad the polymer matrix suffers severe chemical degradation and material loss. Chemical degradation is observed in ToF-SIMS by detection of ions that are indicative of fragmentation, unsaturation, and functionalization of molecules in the PTFE matrix. The mass spectra also expose the subtle trends of crosslinking within the α-irradiated polymer matrix. ToF-SIMS images support the assertion that chemical degradation is the result of a particle irradiation and show morphological roughening of the sample with increased a dose. High resolution SEM images more clearly illustrate the morphological roughening and the mass loss that accompanies high doses of a particles. RGA confirms the supposition that the outcome of chemical degradation in the PTFE matrix with continuing irradiation is evolution of volatile species resulting in morphological roughening and mass loss. Finally, we reveal and discuss relationships between chemical structure and mechanical properties such as hardness and elastic modulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a great variability of single-pulse (with only one pulse/wave-packet traveling along the cavity) generation regimes in fiber lasers passively mode-locked by non-linear polarization evolution (NPE) effect. Combining extensive numerical modeling and experimental studies, we identify multiple very distinct lasing regimes with a rich variety of dynamic behavior and a remarkably broad spread of key parameters (by an order of magnitude and more) of the generated pulses. Such a broad range of variability of possible lasing regimes necessitates developing techniques for control/adjustment of such key pulse parameters as duration, radiation spectrum, and the shape of the auto-correlation function. From a practical view point, availability of pulses/wave-packets with such different characteristics from the same laser makes it imperative to develop variability-aware designs with control techniques and methods to select appropriate application-oriented regimes. © 2014 The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pyrolytic behaviour of individual component in biomass needs to be understood to gain insight into the mechanism of biomass pyrolysis. A comparative study on the pyrolysis of cellulose (hexose-based polysaccharides) and hemicallulose (pentose-based polysaccharides) is performed by two sets of experiments including TG analysis and Py-GC-MS/FTIR. The samples of these two polysaccharide components are thermally decomposed in TGA at the heating rate of 5 and 60 K/min to demonstrate the different characteristics of mass loss stage(s) between them. The yield of pyrolytic products is examined by a fluidized-bed fast pyrolysis unit. The experiment confirms that cellulose mainly contributes to bio-oil production (reaching the maximum of 72% at 580 °C), while hemicellulose works as an important precursor for the char production (∼25%). The compounds in the gaseous mixture (CO and CO2) and bio-oil (levoglucosan, furfural, aldehyde, acetone and acetic acid) are further characterized by GC-MS for cellulose and GC-FTIR for hemicellulose, and their formations are investigated thoroughly. © 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different generation modes of all-positive-dispersion all-fibre Yb laser mode-locked due to effect of non-linear polarization evolution are investigated. For the first time we realized in the same laser both generation of single picoseconds pulse train and a newly observed lasing regime where generated are picosecond wave-packets, each being a train of femtosecond sub-pulses. Using both experimental results and numerical modeling we discuss in detail the mechanisms of laser mode-locking and switching of generation regimes and show a strong dependence of output laser characteristics on configuration of polarization controllers. A good qualitative agreement between experimental results and numerical modeling is demonstrated. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexaphenylbiadamantane-based microporous organic polymers (MOPs) were successfully synthesized by Suzuki coupling under mild conditions. The obtained MOPs show high surface area (891 m2 g−1), ultra-high thermal (less than 40% mass loss at temperatures up to 1000 °C) and chemical (no apparent decomposition in organic solvents for more than 7 days) stability, gas (H2, CO2, CH4) capture capabilities and vapor (benzene, hexane) adsorption. These combined abilities render the synthesized MOPs an attractive candidate as thermo-chemically stable adsorbents for practical use in gas storage and pollutant vapor adsorption.