8 resultados para Linear fitting

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To to evaluate the benefit of bilinear and linear fitting to characterize the retinal vessel dilation to flicker light stimulation for the purpose of risk stratification in cardiovascular disease. Methods: Forty-five patients (15 with coronary artery disease (CAD), 15 with Diabetes Mellitus (DM) and 15 with CAD and DM) all underwent contact tonometry, digital blood pressure measurement, fundus photography, retinal vessel oximetry, static retinal vessel analysis and continous retinal diameter assessment using the retinal vessel analyser (and flicker light provocation). In addition we measured blood glucose (HbA1c) and keratinin levels in DM patients. Results: With increased severity of cardiovascular disease a more linear reaction profile of retinal arteriolar diameter to flicker light provocation can be observed. Conclusion: Absolute values of vessel dilation provide only limited information on the state of retinal arteriolar dilatory response to flicker light. The approach of bilinear fitting takes into account the immediate response to flicker light provocation as well as the maintained dilatory capacity during prolonged stimulation. Individuals with cardiovascular disease however show a largely linear reaction profile indicating an impairment of the initial rapid dilatory response as usually observed in healty individuals

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Non-linear relationships are common in microbiological research and often necessitate the use of the statistical techniques of non-linear regression or curve fitting. In some circumstances, the investigator may wish to fit an exponential model to the data, i.e., to test the hypothesis that a quantity Y either increases or decays exponentially with increasing X. This type of model is straight forward to fit as taking logarithms of the Y variable linearises the relationship which can then be treated by the methods of linear regression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In some circumstances, there may be no scientific model of the relationship between X and Y that can be specified in advance and indeed the objective of the investigation may be to provide a ‘curve of best fit’ for predictive purposes. In such an example, the fitting of successive polynomials may be the best approach. There are various strategies to decide on the polynomial of best fit depending on the objectives of the investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the visual mechanisms that encode edge blur in images. Our previous work suggested that the visual system spatially differentiates the luminance profile twice to create the 'signature' of the edge, and then evaluates the spatial scale of this signature profile by applying Gaussian derivative templates of different sizes. The scale of the best-fitting template indicates the blur of the edge. In blur-matching experiments, a staircase procedure was used to adjust the blur of a comparison edge (40% contrast, 0.3 s duration) until it appeared to match the blur of test edges at different contrasts (5% - 40%) and blurs (6 - 32 min of arc). Results showed that lower-contrast edges looked progressively sharper.We also added a linear luminance gradient to blurred test edges. When the added gradient was of opposite polarity to the edge gradient, it made the edge look progressively sharper. Both effects can be explained quantitatively by the action of a half-wave rectifying nonlinearity that sits between the first and second (linear) differentiating stages. This rectifier was introduced to account for a range of other effects on perceived blur (Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54), but it readily predicts the influence of the negative ramp. The effect of contrast arises because the rectifier has a threshold: it not only suppresses negative values but also small positive values. At low contrasts, more of the gradient profile falls below threshold and its effective spatial scale shrinks in size, leading to perceived sharpening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fitting a linear regression to data provides much more information about the relationship between two variables than a simple correlation test. A goodness of fit test of the line should always be carried out. Hence, ‘r squared’ estimates the strength of the relationship between Y and X, ANOVA whether a statistically significant line is present, and the ‘t’ test whether the slope of the line is significantly different from zero. In addition, it is important to check whether the data fit the assumptions for regression analysis and, if not, whether a transformation of the Y and/or X variables is necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Fitting a linear regression to data provides much more information about the relationship between two variables than a simple correlation test. A goodness of fit test of the line should always be carried out. Hence, r squared estimates the strength of the relationship between Y and X, ANOVA whether a statistically significant line is present, and the ‘t’ test whether the slope of the line is significantly different from zero. 2. Always check whether the data collected fit the assumptions for regression analysis and, if not, whether a transformation of the Y and/or X variables is necessary. 3. If the regression line is to be used for prediction, it is important to determine whether the prediction involves an individual y value or a mean. Care should be taken if predictions are made close to the extremities of the data and are subject to considerable error if x falls beyond the range of the data. Multiple predictions require correction of the P values. 3. If several individual regression lines have been calculated from a number of similar sets of data, consider whether they should be combined to form a single regression line. 4. If the data exhibit a degree of curvature, then fitting a higher-order polynomial curve may provide a better fit than a straight line. In this case, a test of whether the data depart significantly from a linear regression should be carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The techniques associated with regression, whether linear or non-linear, are some of the most useful statistical procedures that can be applied in clinical studies in optometry. 2. In some cases, there may be no scientific model of the relationship between X and Y that can be specified in advance and the objective may be to provide a ‘curve of best fit’ for predictive purposes. In such cases, the fitting of a general polynomial type curve may be the best approach. 3. An investigator may have a specific model in mind that relates Y to X and the data may provide a test of this hypothesis. Some of these curves can be reduced to a linear regression by transformation, e.g., the exponential and negative exponential decay curves. 4. In some circumstances, e.g., the asymptotic curve or logistic growth law, a more complex process of curve fitting involving non-linear estimation will be required.