28 resultados para Light-front electromagnetic current
em Aston University Research Archive
Resumo:
The hygroscopic growth of aerosols is an important factor effecting particle size. The consequence of the hygroscopic growth of pharrnaceutical aerosols is a change in their deposition characteristics, such that there is an increase in the total amount deposited in the lung. In this study the hygroscopic growth of disodium fluorescein (DF) aerosol powders was investigated by coating the powders with lauric and capric acids. The coating procedure was carried out in dichloromethane and chloroform, which acted as cosolvents for the fatty acids. An assessment of the extent and the nature of the coating was carried out. The qualitative assessment of the coating was achieved by infra-red spectroscopy, electronscanning chemical analysis and scanning electron microscopy. The quantitative analysis was carried out by differential refractometry, ultra-violet spectroscopy and gas liquid chromatography. These powders were generated under conditions approaching those in the lung, of 97 % relative humidity and 37"C. Coated and uncoated DF aerosol powders were introduced into a controlled temperature and relative humidity apparatus, designed and constructed for the investigation of hygroscopic growth in these studies. A vertical spinning disc device was used to generate the powders. Under conditions of controlled temperature and relative humidity mentioned, the growth ratio of disodium fluorescein alone was 1.45 compared with 1.68, for a nominal coating of DF with lauric acid of 0.12 gg-1, 1.0 for a nominal lauric acid coating of 0.2 gg-1, and 1.02 for a nominal capric acid coating of 0.18 gg-1. The range of control of hygroscopic growth of these aerosols has implications for the deposition of these preparations in the respiratory tract. These implications are discussed in the light of the current knowledge of the effects of hygroscopic growth on the deposition of pharmaceutical and environmental aerosols. A series of experiments in which pulmonary ventilation using a simple radioaerosol generator and delivery system are reported showing that particle size determination may be used to aid the design of diagnostic aerosol generators.
Resumo:
Previous studies into student volunteering have shown how formally organized volunteering activities have social, economic and practical benefits for student volunteers and the recipients of their volunteerism (Egerton, 2002; Vernon & Foster, 2002); moreover student volunteering provides the means by which undergraduates are able to acquire and hone transferable skills sought by employers following graduation (Eldridge & Wilson, 2003; Norris et al, 2006). Within the UK Higher Education Sector, a popular mechanism for accessing volunteering is through formally organized student mentoring programmes whereby more ‘senior’ students volunteer to mentor less experienced undergraduates through a particular phase of their academic careers, including the transition from school or college to university. The value of student mentoring as a pedagogical tool within Higher Education is reflected in the literature (see for example, Bargh & Schul, 1980, Hartman,1990, Woodd, 1997). However, from a volunteering perspective, one of the key issues relates to the generally accepted conceptualisation of volunteering as a formally organized activity, that is un-coerced and for which there is no payment (Davis Smith, 1992, 1998; Sheard, 1995). Although the majority of student mentoring programs discussed in the paper are unpaid and voluntary in nature, in a small number of institutions some of the mentoring programs offered to students provide a minimum wage for mentors. From an ethical perspective, such payments may cause difficulties when considering potential mentors’ motivations and reasons for participating in the program. Additionally, institutions usually only have one or two paid mentoring programs running alongside several voluntary programmes – sometimes resulting in an over-subscription for places as paid mentors to the detriment of unpaid programs. Furthermore, from an institutional perspective, student mentoring presents a set of particular ethical problems reflecting issues around ‘matching’ mentors and mentees in terms of gender, race, ethnicity and religion. This is found to be the case in some ‘targeted’ mentoring programs whereby a particular demographic group of students are offered access to mentoring in an attempt to improve their chances of academic success. This paper provides a comparative analysis of the experiences and perceptions of mentors and mentees participating in a wide-range of different mentoring programs. It also analyzes the institutional challenges and benefits associated with managing large scale student volunteering programs. In doing so the paper adds to third sector literature by critiquing the distinctive issues surrounding student volunteering and by discussing, in-depth, the management of large groups of student volunteers. From a public policy perspective, the economic, educational, vocational and social outcomes of student volunteering make this an important subject meriting investigation. Little is known about the mentoring experiences of student volunteers with regards to the ‘added value’ of participating in campus-based volunteering activities. Furthermore, in light of the current economic downturn, by drawing attention to the contribution that student volunteering plays in equipping undergraduates with transferable ‘employability’ related skills and competencies (Andrews & Higson, 2008), this paper makes an important contribution to current educational and political debates. In addition to providing the opportunity for students to acquire key transferable skills, the findings suggest that mentoring encourages students to volunteer in other areas of university and community life. The paper concludes by arguing that student mentoring provides a valuable learning experience for student volunteer mentors and for the student and pupil mentees with whom they are placed.
Resumo:
Purpose – The purpose of this paper is to challenge the assumption that process losses of individuals working in teams are unavoidable. The paper aims to challenge this assumption on the basis of social identity theory and recent research. Design/methodology/approach – The approach adopted in this paper is to review the mainstream literature providing strong evidence for motivation problems of individuals working in groups. Based on more recent literature, innovative ways to overcome these problems are discussed. Findings – A social identity-based analysis and recent findings summarized in this paper show that social loafing can be overcome and that even motivation gains in group work can be expected when groups are important for the individual group members' self-concepts. Practical implications – The paper provides human resource professionals and front-line managers with suggestions as to how individual motivation and performance might be increased when working in teams. Originality/value – The paper contributes to the literature by challenging the existing approach to reducing social loafing, i.e. individualizing workers as much as possible, and proposes a team-based approach instead to overcome motivation problems.
Resumo:
The present work describes the development of a proton induced X-ray emission (PIXE) analysis system, especially designed and builtfor routine quantitative multi-elemental analysis of a large number of samples. The historical and general developments of the analytical technique and the physical processes involved are discussed. The philosophy, design, constructional details and evaluation of a versatile vacuum chamber, an automatic multi-sample changer, an on-demand beam pulsing system and ion beam current monitoring facility are described.The system calibration using thin standard foils of Si, P, S,Cl, K, Ca, Ti, V, Fe, Cu, Ga, Ge, Rb, Y and Mo was undertaken at proton beam energies of 1 to 3 MeV in steps of 0.5 MeV energy and compared with theoretical calculations. An independent calibration check using bovine liver Standard Reference Material was performed. The minimum detectable limits have been experimentally determined at detector positions of 90° and 135° with respect to the incident beam for the above range of proton energies as a function of atomic number Z. The system has detection limits of typically 10- 7 to 10- 9 g for elements 14
Resumo:
This thesis presents an examination of the factors which influence the performance of eddy-current machines and the way in which they affect optimality of those machines. After a brief introduction to the types of eddy-current machine considered, the applications to which these machines are put are examined. A list of parameters by which to assess their performance is obtained by considering the machine as part of a system. in this way an idea of what constitutes an optimal machine is obtained. The third chapter then identifies the factors which affects the performance and makes a quantitative evaluation of the effect. Here the various alternative configurations and components are compared with regard to their influence on the mechanical, electromagnetic, and thermal performance criteria of the machine. Chapter four contains a brief review of the methods of controlling eddy-current machines by electronic methods using thyristors or transistors as the final control element. Where necessary, the results of previous workers in the field of electrical machines have been extended or adapted to increase the usefulness of this thesis.
Resumo:
The first part of the thesis compares Roth's method with other methods, in particular the method of separation of variables and the finite cosine transform method, for solving certain elliptic partial differential equations arising in practice. In particular we consider the solution of steady state problems associated with insulated conductors in rectangular slots. Roth's method has two main disadvantages namely the slow rate of convergence of the double Fourier series and the restrictive form of the allowable boundary conditions. A combined Roth-separation of variables method is derived to remove the restrictions on the form of the boundary conditions and various Chebyshev approximations are used to try to improve the rate of convergence of the series. All the techniques are then applied to the Neumann problem arising from balanced rectangular windings in a transformer window. Roth's method is then extended to deal with problems other than those resulting from static fields. First we consider a rectangular insulated conductor in a rectangular slot when the current is varying sinusoidally with time. An approximate method is also developed and compared with the exact method.The approximation is then used to consider the problem of an insulated conductor in a slot facing an air gap. We also consider the exact method applied to the determination of the eddy-current loss produced in an isolated rectangular conductor by a transverse magnetic field varying sinusoidally with time. The results obtained using Roth's method are critically compared with those obtained by other authors using different methods. The final part of the thesis investigates further the application of Chebyshdev methods to the solution of elliptic partial differential equations; an area where Chebyshev approximations have rarely been used. A poisson equation with a polynomial term is treated first followed by a slot problem in cylindrical geometry.
Resumo:
The increasing cost of developing complex software systems has created a need for tools which aid software construction. One area in which significant progress has been made is with the so-called Compiler Writing Tools (CWTs); these aim at automated generation of various components of a compiler and hence at expediting the construction of complete programming language translators. A number of CWTs are already in quite general use, but investigation reveals significant drawbacks with current CWTs, such as lex and yacc. The effective use of a CWT typically requires a detailed technical understanding of its operation and involves tedious and error-prone input preparation. Moreover, CWTs such as lex and yacc address only a limited aspect of the compilation process; for example, actions necessary to perform lexical symbol valuation and abstract syntax tree construction must be explicitly coded by the user. This thesis presents a new CWT called CORGI (COmpiler-compiler from Reference Grammar Input) which deals with the entire `front-end' component of a compiler; this includes the provision of necessary data structures and routines to manipulate them, both generated from a single input specification. Compared with earlier CWTs, CORGI has a higher-level and hence more convenient user interface, operating on a specification derived directly from a `reference manual' grammar for the source language. Rather than developing a compiler-compiler from first principles, CORGI has been implemented by building a further shell around two existing compiler construction tools, namely lex and yacc. CORGI has been demonstrated to perform efficiently in realistic tests, both in terms of speed and the effectiveness of its user interface and error-recovery mechanisms.
Resumo:
Methods of solving the neuro-electromagnetic inverse problem are examined and developed, with specific reference to the human visual cortex. The anatomy, physiology and function of the human visual system are first reviewed. Mechanisms by which the visual cortex gives rise to external electric and magnetic fields are then discussed, and the forward problem is described mathematically for the case of an isotropic, piecewise homogeneous volume conductor, and then for an anisotropic, concentric, spherical volume conductor. Methods of solving the inverse problem are reviewed, before a new technique is presented. This technique combines prior anatomical information gained from stereotaxic studies, with a probabilistic distributed-source algorithm to yield accurate, realistic inverse solutions. The solution accuracy is enhanced by using both visual evoked electric and magnetic responses simultaneously. The numerical algorithm is then modified to perform equivalent current dipole fitting and minimum norm estimation, and these three techniques are implemented on a transputer array for fast computation. Due to the linear nature of the techniques, they can be executed on up to 22 transputers with close to linear speedup. The latter part of the thesis describes the application of the inverse methods to the analysis of visual evoked electric and magnetic responses. The CIIm peak of the pattern onset evoked magnetic response is deduced to be a product of current flowing away from the surface areas 17, 18 and 19, while the pattern reversal P100m response originates in the same areas, but from oppositely directed current. Cortical retinotopy is examined using sectorial stimuli, the CI and CIm ;peaks of the pattern onset electric and magnetic responses are found to originate from areas V1 and V2 simultaneously, and they therefore do not conform to a simple cruciform model of primary visual cortex.
Resumo:
A methodology is presented which can be used to produce the level of electromagnetic interference, in the form of conducted and radiated emissions, from variable speed drives, the drive that was modelled being a Eurotherm 583 drive. The conducted emissions are predicted using an accurate circuit model of the drive and its associated equipment. The circuit model was constructed from a number of different areas, these being: the power electronics of the drive, the line impedance stabilising network used during the experimental work to measure the conducted emissions, a model of an induction motor assuming near zero load, an accurate model of the shielded cable which connected the drive to the motor, and finally the parasitic capacitances that were present in the drive modelled. The conducted emissions were predicted with an error of +/-6dB over the frequency range 150kHz to 16MHz, which compares well with the limits set in the standards which specify a frequency range of 150kHz to 30MHz. The conducted emissions model was also used to predict the current and voltage sources which were used to predict the radiated emissions from the drive. Two methods for the prediction of the radiated emissions from the drive were investigated, the first being two-dimensional finite element analysis and the second three-dimensional transmission line matrix modelling. The finite element model took account of the features of the drive that were considered to produce the majority of the radiation, these features being the switching of the IGBT's in the inverter, the shielded cable which connected the drive to the motor as well as some of the cables that were present in the drive.The model also took account of the structure of the test rig used to measure the radiated emissions. It was found that the majority of the radiation produced came from the shielded cable and the common mode currents that were flowing in the shield, and that it was feasible to model the radiation from the drive by only modelling the shielded cable. The radiated emissions were correctly predicted in the frequency range 30MHz to 200MHz with an error of +10dB/-6dB. The transmission line matrix method modelled the shielded cable which connected the drive to the motor and also took account of the architecture of the test rig. Only limited simulations were performed using the transmission line matrix model as it was found to be a very slow method and not an ideal solution to the problem. However the limited results obtained were comparable, to within 5%, to the results obtained using the finite element model.
Resumo:
A second-harmonic direct current (DC) ripple compensation technique is presented for a multi-phase, fault-tolerant, permanent magnet machine. The analysis has been undertaken in a general manner for any pair of phases in operation with the remaining phases inactive. The compensation technique determines the required alternating currents in the machine to eliminate the second-harmonic DC-link current, while at the same time minimising the total rms current in the windings. An additional benefit of the compensation technique is a reduction in the magnitude of the electromagnetic torque ripple. Practical results are included from a 70 kW, five-phase generator system to validate the analysis and illustrate the performance of the compensation technique.
Resumo:
The medicinal qualities of pineapple are recognized in many traditions in South America, China and Southeast Asia. These qualities are attributed to bromelain, a 95%-mixture of proteases. Medicinal qualities of bromelain include anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Existing evidence derived from clinical observations as well as from mouse- and cell-based models suggests that bromelain acts systemically, affecting multiple cellular and molecular targets. In recent years, studies have shown that bromelain has the capacity to modulate key pathways that support malignancy. It is now possible to suggest that the anti-cancer activity of bromelain consists in the direct impact on cancer cells and their micro-environment, as well as in the modulation of immune, inflammatory and haemostatic systems. This review will summarize existing data relevant to bromelain's anti-cancer activity and will suggest mechanisms which account for bromelain's effect, in the light of research involving non-cancer models. The review will also identify specific new research questions that will need to be addressed in order for a full assessment of bromelain-based anti-cancer therapy.
Resumo:
E-government has often been heralded as the new way forwards for emerging countries. While many such countries are already offering e-government services and are gearing up for further growth, little is actually known of the forming stages that are necessary to ensure a greater rate of success and avoid the traditional failure traps linked to new technology and information system adoption and diffusion. We situate our research in the case of mobile phone as a reflection of the current market situation in emerging countries. We contend, in this paper, that more research is needed to understand future intention to use e-government services through mobile phone technology. Front loading activities both from a government and technology perspectives are required to facilitate the decision making process by users.
Resumo:
This paper contributes to the prosocial service behavior (PSB) literature by investigating the nature of the relationships between internal communication and PSBs, and whether role stress and organizational commitment mediate these relationships. According to the literature, internal communication plays an important role in influencing FLEs job attitudes and behaviors, as well as reducing role stress. Data collected from FLEs in a UK based service organization was used to test our conceptual framework. The results show that FLE perceptions of internal communication practices influence their role stress and organizational commitment, which, in turn, affect the performance of PSBs. Our findings highlight the significance of studying role stress and organizational commitment as mediators in the relationship between internal communication and PSBs, and shed light on the mechanisms by which internal communication influences PSBs. The limitations of the study are then sketched, and suggestions for future research are also made.
Resumo:
VSC converters are becoming more prevalent for HVDC applications. Two circuits are commercially available at present, a traditional six-switch, PWM inverter, implemented using series connected IGBTs - ABBs HVDC Light®, and the other a modular multi-level converter (MMC) - Siemens HVDC-PLUS. This paper presents an alternative MMC topology, which utilises a novel current injection technique, and exhibits several desirable characteristics.
Resumo:
Internal quantum efficiency (IQE) of a blue high-brightness InGaN/GaN light-emitting diode (LED) was evaluated from the external quantum efficiency measured as a function of current at various temperatures ranged between 13 and 440 K. Processing the data with a novel evaluation procedure based on the ABC-model, we have determined the temperature-dependent IQE of the LED structure and light extraction efficiency of the LED chip. Separate evaluation of these parameters is helpful for further optimization of the heterostructure and chip designs. The data obtained enable making a guess on the temperature dependence of the radiative and Auger recombination coefficients, which may be important for identification of dominant mechanisms responsible for the efficiency droop in III-nitride LEDs. Thermal degradation of the LED performance in terms of the emission efficiency is also considered.