7 resultados para Lexington, Battle of, Lexington, Mass., 1775.
em Aston University Research Archive
Resumo:
A diffusion-controlled electrochemical mass transfer technique has been employed in making local measurements of shell-side coefficients in segmentally baffled shell and tube heat exchangers. Corresponding heat transfer data are predicted through the Chilton and Colburn heat and mass transfer analogy. Mass transfer coefficients were measured for baffle spacing lengths of individual tubes in an internal baffle compartment. Shell-side pressure measurements were also made. Baffle compartment average coefficients derived from individual tube coefficients are shown to be in good agreement with reported experimental bundle average heat transfer data for a heat exchanger model of similar geometry. Mass transfer coefficients of individual tubes compare favourably with those obtained previously by another mass transfer technique. Experimental data are reported for a variety of segmental baffle configurations over the shell-side Reynolds number range 100 to 42 000. Baffles with zero clearances were studied at three baffle cuts and two baffle spacings. Baffle geometry is shown to have a large effect on the distribution of tube coefficients within the baffle compartment. Fluid "jetting" is identified with some baffle configurations. No simple characteristic velocity is found to correlate zonal or baffle compartment average mass transfer data for the effect of both baffle cut and baffle spacing. Experiments with baffle clearances typical of commercial heat exchangers are also reported. The effect of leakage streams associated with these baffles is identified. Investigations were extended to double segmental baffles for which no data had previously been published. The similarity in the shell-side characteristics of this baffle arrangement and two parallel single segmental baffle arrangements is demonstrated. A general relationship between the shell-side mass transfer performance and pressure drop was indicated by the data for all the baffle configurations examined.
Resumo:
Protein oxidation is thought to contribute to a number of inflammatory diseases, hence the development of sensitive and specific analytical techniques to detect oxidative PTMs (oxPTMs) in biological samples is highly desirable. Precursor ion scanning for fragment ions of oxidized amino acid residues was investigated as a label-free MS approach to mapping specific oxPTMs in a complex mixture of proteins. Using HOCl-oxidized lysozyme as a model system, it was found that the immonium ions of oxidized tyrosine and tryptophan formed in MS(2) analysis could not be used as diagnostic ions, owing to the occurrence of isobaric fragment ions from unmodified peptides. Using a double quadrupole linear ion trap mass spectrometer, precursor ion scanning was combined with detection of MS(3) fragment ions from the immonium ions and collisionally-activated decomposition peptide sequencing to achieve selectivity for the oxPTMs. For chlorotyrosine, the immonium ion at 170.1 m/z fragmented to yield diagnostic ions at 153.1, 134.1, and 125.1 m/z, and the hydroxytyrosine immonium ion at 152.1 m/z gave diagnostic ions at 135.1 and 107.1 m/z. Selective MS(3) fragment ions were also identified for 2-hydroxytryptophan and 5-hydroxytryptophan. The method was used successfully to map these oxPTMs in a mixture of nine proteins that had been treated with HOCl, thereby demonstrating its potential for application to complex biological samples.
Resumo:
Protein modifications, including oxidative modifications, glycosylations, and oxidized lipid-protein adducts, are becoming increasingly important as biomarkers and in understanding disease etiology. There has been a great deal of interest in mapping these on Apo B100 from low density lipoprotein (LDL). We have used extracted ion chromatograms of product ions generated using a very narrow mass window from high-resolution tandem mass spectrometric data collected on a rapid scanning quadrupole time-of-flight (QTOF) instrument, to selectively and sensitively detect modified peptides and identify the site and nature of a number of protein modifications in parallel. We have demonstrated the utility of this method by characterizing for the first time oxidized phospholipid adducts to LDL and human serum albumin and for the detection of glycosylation and kynurenin formation from the oxidation of tryptophan residues in LDL. © 2013 American Chemical Society.
Resumo:
This paper presented at the European Meeting of the Society-for-Free-Radical-Research-Europe 2007, discusses the development of novel mass spectrometry methodology to detect post-translational modifications in oxidative stress and disease.
Resumo:
In inflammatory diseases, release of oxidants leads to oxidative damage to biomolecules. HOCl (hypochlorous acid), released by the myeloperoxidase/H2O2/Cl- system, can cause formation of phospholipid chlorohydrins, or alpha-chloro-fatty aldehydes from plasmalogens. It can attack several amino acid residues in proteins, causing post-translational oxidative modifications of proteins, but the formation of 3-chlorotyrosine is one of the most stable markers of HOCl-induced damage. Soft-ionization MS has proved invaluable for detecting the occurrence of oxidative modifications to both phospholipids and proteins, and characterizing the products generated by HOCl-induced attack. For both phospholipids and proteins, the application of advanced mass spectrometric methods such as product or precursor ion scanning and neutral loss analysis can yield information both about the specific nature of the oxidative modification and the biomolecule modified. The ideal is to be able to apply these methods to complex biological or clinical samples, to determine the site-specific modifications of particular cellular components. This is important for understanding disease mechanisms and offers potential for development of novel biomarkers of inflammatory diseases. In the present paper, we review some of the progress that has been made towards this goal.
Resumo:
Development of mass spectrometry techniques to detect protein oxidation, which contributes to signalling and inflammation, is important. Label-free approaches have the advantage of reduced sample manipulation, but are challenging in complex samples owing to undirected analysis of large data sets using statistical search engines. To identify oxidised proteins in biological samples, we previously developed a targeted approach involving precursor ion scanning for diagnostic MS3 ions from oxidised residues. Here, we tested this approach for other oxidations, and compared it with an alternative approach involving the use of extracted ion chromatograms (XICs) generated from high-resolution MSMS data using very narrow mass windows. This accurate mass XIC data methodology was effective at identifying nitrotyrosine, chlorotyrosine, and oxidative deamination of lysine, and for tyrosine oxidations highlighted more modified peptide species than precursor ion scanning or statistical database searches. Although some false positive peaks still occurred in the XICs, these could be identified by comparative assessment of the peak intensities. The method has the advantage that a number of different modifications can be analysed simultaneously in a single LC-MSMS run. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. Biological significance: The use of accurate mass extracted product ion chromatograms to detect oxidised peptides could improve the identification of oxidatively damaged proteins in inflammatory conditions. © 2013 Elsevier B.V.
Resumo:
Oxidised biomolecules in aged tissue could potentially be used as biomarkers for age-related diseases; however, it is still unclear whether they causatively contribute to ageing or are consequences of the ageing process. To assess the potential of using protein oxidation as markers of ageing, mass spectrometry (MS) was employed for the identification and quantification of oxidative modifications in obese (ob/ob) mice. Lean muscle mass and strength is reduced in obesity, representing a sarcopenic model in which the levels of oxidation can be evaluated for different muscular systems including calcium homeostasis, metabolism and contractility. Several oxidised residues were identified by tandem MS (MS/MS) in both muscle homogenate and isolated sarcoplasmic reticulum (SR), an organelle that regulates intracellular calcium levels in muscle. These modifications include oxidation of methionine, cysteine, tyrosine, and tryptophan in several proteins such as sarcoplasmic reticulum calcium ATPase (SERCA), glycogen phosphorylase, and myosin. Once modifications had been identified, multiple reaction monitoring MS (MRM) was used to quantify the percentage modification of oxidised residues within the samples. Preliminary data suggests proteins in ob/ob mice are more oxidised than the controls. For example SERCA, which constitutes 60-70% of the SR, had approximately a 2-fold increase in cysteine trioxidation of Cys561 in the obese model when compared to the control. Other obese muscle proteins have also shown a similar increase in oxidation for various residues. Further analysis with complex protein mixtures will determine the potential diagnostic use of MRM experiments for analysing protein oxidation in small biological samples such as muscle needle biopsies.