6 resultados para Lex Manilia de imperio Cn. Pompei.

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge transport and dielectric measurements were carried out on compacted powder and single-crystal samples of bistable RbxMn[Fe(CN)6]y·zH2O in the two valence-tautomeric forms (MnIIFeIII and MnIIIFeII) as a function of temperature (120-350 K) and frequency (10-2-106 Hz). The complex conductivity data reveal universal conductivity behavior and obey the Barton-Nakajima-Namikawa relationship. The charge transport is accompanied by dielectric relaxation that displays the same thermal activation energy as the conductivity. Surprisingly, the activation energy of the conductivity was found very similar in the two valence-tautomeric forms (0.55 eV), and the conductivity change between the two phases is governed mainly by the variation of the preexponential factor in each sample. The phase transition is accompanied by a large thermal hysteresis of the conductivity and the dielectric constant. In the hysteresis region, however, a crossover occurs in the charge transport mechanism at T < 220 K from an Arrhenius-type to a varying activation energy behavior, conferring an unusual “double-loop” shape to the hysteresis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A periodic density functional theory method using the B3LYP hybrid exchange-correlation potential is applied to the Prussian blue analogue RbMn[Fe(CN)6] to evaluate the suitability of the method for studying, and predicting, the photomagnetic behavior of Prussian blue analogues and related materials. The method allows correct description of the equilibrium structures of the different electronic configurations with regard to the cell parameters and bond distances. In agreement with the experimental data, the calculations have shown that the low-temperature phase (LT; Fe(2+)(t(6)2g, S = 0)-CN-Mn(3+)(t(3)2g e(1)g, S = 2)) is the stable phase at low temperature instead of the high-temperature phase (HT; Fe(3+)(t(5)2g, S = 1/2)-CN-Mn(2+)(t(3)2g e(2)g, S = 5/2)). Additionally, the method gives an estimation for the enthalpy difference (HT LT) with a value of 143 J mol(-1) K(-1). The comparison of our calculations with experimental data from the literature and from our calorimetric and X-ray photoelectron spectroscopy measurements on the Rb0.97Mn[Fe(CN)6]0.98 x 1.03 H2O compound is analyzed, and in general, a satisfactory agreement is obtained. The method also predicts the metastable nature of the electronic configuration of the high-temperature phase, a necessary condition to photoinduce that phase at low temperatures. It gives a photoactivation energy of 2.36 eV, which is in agreement with photoinduced demagnetization produced by a green laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an ESR study at excitation frequencies of 9.4 GHz and 222.4 GHz of powders and single crystals of a Prussian Blue analogue (PBA), RbMn[Fe(CN)6]*H2O in which Fe and Mn undergoes a charge transfer transition between 175 and 300 K. The ESR of PBA powders, also reported by Pregelj et al. (JMMM, 316, E680 (2007)) is assigned to cubic magnetic clusters of Mn2+ ions surrounding Fe(CN)6 vacancies. The clusters are well isolated from the bulk and are superparamagnetic below 50 K. In single crystals various defects with lower symmetry are also observed. Spin-lattice relaxation broadens the bulk ESR beyond observability. This strong spin relaxation is unexpected above the charge transfer transition and is attributed to a mixing of the Mn3+ - Fe2+ state into the prevalent Mn2+ - Fe3+ state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and detailed characterization of a few samples of the compound RbMn[Fe(CN)]·zHO are described. The composition of the materials significantly depends on the applied preparative conditions. Analysis of spectroscopic results (FTIR, Raman, Fe Mössbauer, XPS) and X-ray powder-diffraction data yielded a further assessment of the difference in structural features in terms of the amount of Fe(CN)6 vacancies and the associated number of water molecules. The characteristic individual magnetic behavior, as well as the metal-to-metal charge-transfer capabilities of the various samples, could be related to significant changes within the structures that appear to be associated with the synthetic method used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of Cs4[Re6Te8(CN)6]·2H2O with Cu(en)2Cl2 in water affords crystals of a cluster complex [{Cu(H2O)(en) 2}{Cu(en)2}Re6Te8(CN)6]·3H2O. The structure of the compound is determined by single crystal X-ray diffraction (a = 10.8082(4) Å, b = 16.5404(6) Å, c = 24.6480(7) Å, β = 92.696(1)°, V = 4401.5(3) Å3, Z = 4, space group P21/n, R 1 = 0.0331, wR 2 (all data) = 0.0652). In the complex, cluster [Re6Te8(CN)6]4- anions are linked by Cu2+ cations into zigzag chains through cyanide bridges. The coordination environment of the copper cations is complemented by ethylenediamine molecules. Each of the cluster anions is additionally coordinated by a terminal fragment {Cu(H2O)(en)2}. © 2014 Pleiades Publishing, Ltd.